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Abstract

Robustness is a prominent concept in technical sciences and engineering. It has also 
been recognized as an important principle in evolutionary biology. In this chapter, it is 
proposed that the term “robustness” be used to characterize the extent to which a natu-
ral or artifi cial system can maintain its function when facing perturbation and that this 
concept is relevant in considerations of  Darwinian decision theory. Situations in which 
the action of natural selection is liable to lead to the evolution of robust behavioral 
strategies are highlighted along with some psychological mechanisms that might lead to 
robust decision-making processes. Robustness describes a property of a system varying 
on a continuous scale rather than existing as a dichotomous feature. Degree of robust-
ness depends on the details of the interaction of system characteristics and environmen-
tal contingencies, as well as the specifi c types and extents of  perturbations to which 
the system may be subjected. A system can be robust in one domain while remaining 
highly vulnerable to perturbations in others. As defi ned here, robustness is related to, 
yet distinct from,  fl exibility and optimality. The sorts of environmental variation, and 
hence perturbations, that an organism or technology is liable to face are described, as 
is the cost-benefi t trade-off of robustness. Finally, the robustness of decision making at 
the level of social groups is considered.

Introduction

Soldiers fighting in the trenches during World War I reportedly developed a 
“live and let live” mentality in which mutual truces spontaneously arose, but 
a violation of the truce resulted in quick  retaliation. Axelrod (1984) proposed 
this as an example of  tit-for-tat, a strategy that can maintain cooperation by 
copying a partner’s previous action. In the trench  warfare example, ceasefi res 
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led to ceasefi res and unprovoked attacks led to retribution. Though  tit-for-tat 
can generate  cooperation, a simple mistake can spawn a spiral of escalating 
aggression. An itchy trigger fi nger can start a cascade of violent attacks in the 
trenches. A forgotten or misplaced thank you note can explode into a dramatic 
family feud. As a decision strategy, tit-for-tat may work well in a perfect world 
with no mistakes or accidents, yet it is not robust to error in the environment 
(Selten and Hammerstein 1984).

The topic of robustness is integral to the evolution of biological organisms 
(Hammerstein et al. 2006; Kitano 2004; Wagner 2005). The same is true for the 
evolution of nonbiological systems, such as scientifi c communities and tech-
nologies. Because decision makers’ environments are and have been subject 
to perturbation, robustness is important to consider in the context of a general 
theory of decision making, and especially so in a decision theory built on the 
principles of Darwinian evolution.

Examples of robust solutions to problems posed by perturbations include, 
but are not limited to, the existence of multiple (often redundant) mechanisms, 
tolerance buffering, and systemic stochasticity. The competition and coop-
eration among these and other mechanisms in complex and uncertain envi-
ronments give rise to the observed complexity of decision-making behavior 
(Simon 1996).

Our main argument is that robustness has been a key driver for the evolu-
tion of different decision-making and control mechanisms. Choice refl ects the 
competition and cooperation of these mechanisms and therefore does not fi t 
nicely into categories which arise from a simple set of axioms. Much hinges 
on the necessity of  learning, which is a central battle between fl exibility and 
speed of response.

Understanding the evolutionary origins of decision mechanisms requires 
us to address the nature of robustness, the nature of environments, and the 
costs and potential benefi ts associated with robustness in these environments. 
Acknowledging that robustness can result from social interactions, we also 
consider robustness in  group decision making, especially via emerging results 
from the literature on swarm intelligence.

Robustness

The concept of robustness is important to many fields of science. In structural 
engineering, structures must meet a fundamental requirement of robustness. 
For example, as described in structural design codes EN 1990 and EN 1991-
1-7, “a structure shall be designed and executed in such a way that it will not 
be damaged by events such as explosion, impact, and/or the consequences of 
human errors, to an extent disproportionate to the original cause.” In biology, 
robustness addresses the probability of survival and reproduction for mem-
bers of a given species. From economies to ecologies, from Homo sapiens to 
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 Drosophila, from the physical landscape in which animals forage to the con-
ceptual landscape in which scientists forage, and across all spatial and tempo-
ral levels of analysis, robustness matters. The broad relevance and complexity 
of the concept of robustness prompt us, however, to ask: Is there a level of 
description of robustness that can aid our understanding of decision making?

Defi ning Robustness

To begin, we must clarify our perspective by defi ning  robustness and some 
of its features. Robustness can be conceptualized as a function between some 
dimension of the environment and performance. For example, for a given au-
tomobile engine, there is a relationship between temperature and performance 
such that performance deteriorates at low and high temperatures. Different en-
gines will exhibit different curves illustrating this relationship. Such curves can 
be summarized in various ways (e.g., mean, standard deviation, area under the 
curve) to characterize how “robust” the engine is with respect to temperature. 
Greater performance across the environmental dimension equates to greater 
robustness. A selling point of the original air-cooled Volkswagen engine, for 
example, was that it would actually start (at least more reliably) at colder tem-
peratures than its water-cooled competitors. Within the Volkswagen engine, a 
key performance characteristic (startability) was more robust to temperature 
variation than the other engines on the market at the time.

In the context of biological systems, different phenotypes can be understood 
to have different performance robustness curves—how well the system in ques-
tion executes its evolved function—under a range of different conditions. Over 
evolutionary time, mechanisms will be selected whose properties maximize 
reproductive success. The specifi c mechanisms selected by Darwinian evolu-
tionary processes depend strongly on the frequency and magnitude with which 
different environmental contingencies are encountered and on the implications 
of the interaction of biological mechanism and environmental contingency for 
reproductive success.

In the context of computations, one can construe performance as a relation-
ship: the production of a particular output (e.g., representation, behavior) given 
a particular state of the world. The same analysis applies. Different mecha-
nisms will maintain performance—this adaptive, systematic input-output rela-
tionship—to a greater or lesser extent, and we can try to quantify how “robust” 
each mechanism is: How well does the mechanism maintain its input-output 
relationship as a function of some environmental parameter? We defi ne robust-
ness as:

the extent to which a system is able to maintain its function when some aspect of 
the system is subject to perturbation.

Robustness is not a binary category but rather a continuously varying n-di-
mensional state space. This conceptualization of robustness is consistent with 
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Levins’s (1966) emphasis on  invariance, Campbell’s (1958, 1966) emphasis 
on multiple determination, and Wimsatt’s (1981) methodological prescription 
for  robustness analyses. High dimensionality makes quantifying robustness in 
a general way more challenging and less tractable but not necessarily impos-
sible, provided one can formally specify the dimensions and possible perturba-
tions. Systems, then, will exhibit a “degree of robustness” as opposed to being 
dichotomously robust or nonrobust.

We are using the term system here in the most general sense, and an aspect 
of that system is any variable, component, characteristic, or policy that could 
affect its function. We adopt a similarly broad interpretation of function: it en-
compasses a system’s purpose, process, or level of performance or outcome. A 
perturbation is any pressure or stressor or environmental change that could in 
principle affect the system’s function.

Flexibility, Optimality, and Robustness

Robustness is associated with  fl exibility and  optimality. Though related, these 
concepts are not identical to robustness. Confusion surrounding the relation-
ships between and distinctions among these terms seems to originate in the fact 
that flexibility, optimality, and robustness are all potential capacities or char-
acteristics of systems. The difference is that robustness depends on, as defi ned 
earlier, the maintenance of function when some aspect of the system is subject 
to perturbation. Thus, robustness is only identifiable within the context of  en-
vironmental variation and  perturbation, and is only present when the system’s 
function is preserved. In other words, in a static environment it may be pos-
sible to demonstrate that a particular system is flexible or even optimal (when 
the environment is both static and certain) within whatever fi xed dimensions 
define the operating environment, but this tells us nothing about the system’s 
robustness. Robustness is only demonstrable when the function of the system 
is assessed across perturbations in environmental contingencies.

Figure 12.1 provides an abstract illustration of some of the key issues for 
robustness and allows us to distinguish it from optimality (defined according to 
some performance criterion) and flexibility (in terms of adapting to prevailing 
conditions). The figure is intentionally abstract to make general points about 
systems and environments and the influence of interactions of their character-
istics on functional performance.

For expository purposes, let us make consideration of the abstractions in 
Figure 12.1 more concrete by assuming that the figure represents the perfor-
mance of a hypothetical agent foraging in an environment, which can poten-
tially exist in different states, modeled as a scalar value e ∈ [0, 10]. This could 
represent some characteristic of the environment, such as the rate at which prey 
arrive. Similarly, the agent’s decision policy is parameterized by a scalar pa-
rameter p ∈ [0, 10] (say a measure of its preference for exploitation rather than 
exploration). Figure 12.1a shows the performance of the agent as a function of 
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e and p, which, for the moment, we will consider to be measured over a short 
time period. Figure 12.1b shows the same surface, but now as a contour plot.
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Figure 12.1  Issues surrounding robustness: (a) and (b) illustrate a hypothetical case 
in which the performance of a system depends on a single scalar quantity representing 
the external environment (designated e in the text) and a single scalar policy (desig-
nated p in the text) representing an aspect of the system. A 3D plot of the performance 
surface that results from interactions of the policy-environment interactions is shown 
in (a); a contour plot of the same surface is provided in (b). The black points show the 
optimum value of the surface for each value of the environment for the parameter range 
shown. The colored rectangles on (b) refer to ranges of values of the environment or the 
policy whose performance characteristics we highlight in the text. In (c), performance 
is shown as a function of the value of the environment (e) for various policy values in 
(b), as described in the text.
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Let us further assume that in this context the function of the agent is to max-
imize its  foraging performance. We can now consider how the performance of 
the system varies over the interaction of environment and agent characteristics:

1. If the environment only occupies a limited range of values of e, say 
e ≅ 2, then an agent with a fi xed policy (here with p ≅ 4) will optimize 
performance.

2. However, if the environment changes a little, so that e ≅ 3, now perfor-
mance with e ≅ 4 is catastrophically bad. Thus, we might say that per-
formance with a fi xed parameter p has low robustness to  environmental 
perturbation. The blue curve in Figure 12.1c shows the performance as 
a function of e for p = 4; the catastrophe at e ≅ 3 is apparent.

3. If, on the other hand, we choose p = 9 (the red curve in Figure 12.1c), 
then performance is more stable as a function of e. Maintenance of per-
formance, in terms of minimizing performance variability, is one popu-
lar measure of robustness; note, however, that this comes at the cost of 
rather poor performance in environments with low values of e com-
pared with what could possibly be achieved for those environments. 
Indeed, a credible strategy for explaining apparent sub-optimalities in 
the behavior of an agent in some environment is to declare that this 
provides robustness in other possible, but not current, environments.

4. Conversely, if the environment happens to take the value e ≅ 10 (the 
green rectangle in Figure 12.1b), then performance is very insensitive 
to the agent’s policy. This is another form of robustness; that is, if the 
policy is subject to internal perturbation arising from damage or decay.

5. A further possibility is that the agent might be able to measure the state 
of the environment and adapt its parameter p accordingly. The black 
asterisks in all of the subplots in Figure 12.1 show what happens if 
the agent can choose p to optimize performance as a function of e. 
Performance is attractively good. This shows how fl exibility can aid 
robustness. However, this fl exibility comes with three potential costs: 
two statistical and one computational. The fi rst statistical cost stems 
from the need to measure the value of e. This requires samples, which 
could be expensive to acquire (if the values of p are inappropriate dur-
ing this period). These costs can be mitigated by knowledge of the 
likely environments e, which will help constrain the estimation prob-
lem. The second statistical cost is that of estimation error/uncertainty. 
Even if estimation is performed as well as possible, there is a chance of 
unlucky samples that could skew the value of e that is inferred, giving 
rise to poor performance. The computational cost comes from the extra 
machinery necessary to make the agent exhibit this fl exibility.

6. For the case of the blue curve, even a small change in e suffi ces to ruin 
performance if that small change results in e ≅ 3. Another popular no-
tion of robustness concerns outliers (see Dayan, this volume). What 
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happens if the environment can sometimes take the value e ≅ 20, which 
is outside any previous experience? Human scientists and engineers 
can use theories about the world to extrapolate surfaces, such as the one 
in Figure 12.1, beyond any extant observation, and so protect against 
imaginable but not experienced environments. Natural selection does 
not have this luxury. Indeed, as we discuss below, natural selection is 
condemned to respond to the history of recent environments, and thus 
can exhibit a form of maladaptive and non-robust  overfi tting.

7. Finally, we face the necessary task of integrating the net performance 
curves, such as those in Figure 12.1c, in order to assess the total perfor-
mance of a particular policy. For instance, it might be catastrophic for 
performance ever to go to 0, or maybe only the average performance 
over the distribution of possible environments matters. Unfortunately, 
this step is completely dependent on the range and distribution over 
possible environments, and also the problem. Even for the case of natu-
ral selection, it will be different if we measure the expected number of 
offspring at different times in the future, or the probability of not hav-
ing been eliminated. Thus, whether we consider the red curve in Figure 
12.1c to be better or worse than the blue curve is formally unanswer-
able in any absolute sense. The answer is contingent on the specifi c 
circumstances.

In summary, there are clear circumstances under which we can distinguish ro-
bustness from at least a local notion of optimality and from fl exibility. It is less 
possible to distinguish robustness from a more holistic notion of optimality, 
since the latter can always be structured so as to include robustness.

It is sometimes supposed that there are trade-offs between the plasticity or 
fl exibility of behavior and its robustness. In such circumstances one must fi rst 
ask whether the correct parameter is being evaluated. Thus fl exibility of behav-
ior may contribute to the robustness of a fi tness outcome. With the robustness 
of a  fi tness outcome, would there then be no pressure for evolutionary change, 
restoring the opposition between robustness and fl exibility?

At other times, robustness is pitted against optimality in discussions of 
decision making (e.g., Rosenhead et al. 1972). Arguments are usually about 
whether the optimal solution for a model is robust in a wider modeling setting 
or in the real world. Of course, in the real world, it is not possible to identify 
with certainty what is optimal (or what is robust) because it is not possible to 
specify fully the real world in modeling terms. Nevertheless, assuming that 
what does evolve is adaptive, this argument can be loosely reformulated as: Is 
it adaptive to be robust, or is it optimal to be robust?

Here we focus on the implications of robustness across evolutionary en-
vironments for the case of decision making. In some cases (such as inbuilt 
fi ght, fl ight, or freezing responses), the agent’s behavior appears to be fi xed 
and genetically determined, perhaps as a response to the dangerous costs of 
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learning. In other cases agents achieve good performance across a range of en-
vironments (which we consider a form of robustness) by learning (Dayan, this 
volume). However, there are multiple mechanisms for learning, which, again, 
may putatively be a response to the demands of performance across variable 
environments.

Variable Environments

If everything about the environment in which a system exists is static, then 
robustness is irrelevant. In the real world, of course,  environmental variability 
is ubiquitous. It is not a question of whether there is environmental variability, 
but rather what, when, where, and how much variability exists. In our defi ni-
tion of robustness, we refer to these environmental variations generically as 
perturbations.

The notion of robustness has broad application because operating condi-
tions are rarely stable. Assessing a system’s robustness requires specifying a 
range of  environmental perturbations over which the system will to a greater 
or lesser extent maintain its function. Yet what forms of variation do organisms 
commonly encounter? In particular, by categorizing common forms of varia-
tion, is it possible to shed light on robust design patterns? Before considering 
some key dimensions of environmental variation, it is worth stressing that the 
list of potential sources of variation is unbounded. Furthermore, the relevance 
of a particular form of variation will depend both on the organism or technol-
ogy in question and the level at which we seek to understand it. A cognitive 
scientist, for example, will likely find irrelevant the fact that all biological sys-
tems operating at temperatures above 0 Kelvin face the perturbations arising 
from thermal noise, even though such perturbations place constraints on func-
tional design (Wagner 2005). For the purposes of this discussion, we wish 
to describe a generally useful categorization of dimensions of environmental 
variability relevant to robustness:

1. Variation within and between environments: Variation occurs both 
within and between environments. For instance, within a specifi c envi-
ronment, the relevant operating conditions faced by an organism could 
be relatively stable, such as the temperature and light conditions of 
deep-sea dwelling creatures. However, the range of potential environ-
ments that organisms of the same species may face could be highly 
variable and uncertain. Consequently, the level at which we examine 
variation (e.g., the population vs. the individual) will determine which 
forms of variation are relevant to robustness (Wagner 2005). Indeed, 
the following forms of variation have the potential to occur both within 
and between environments.

2. Internal versus external variation: Variation can refer to, say, changes 
in the state of an organism’s endocrine system or its energy levels. 
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Should such factors be considered part of the environment or part of 
the organism? Intuitively, the body defi nes a boundary separating the 
internal and external environment, both of which present sources of 
variation which could pose a threat to functioning. Faced with the prob-
lem of regulating its own temperature, for instance, an organism will 
be subject to both internal and external determinants of temperature 
change. Robust responses to these factors may require different de-
signs, due to internal and external variation occurring over different 
timescales (Wagner 2005). More generally,  fatigue,  aging, and a de-
veloping immune system are all examples of variation in the internal 
environment which place constraints on functional design.

3. Degree of  predictability:  Uncertainty exists when an action, such as a 
movement, a decision, or an interpretation, has more than one potential 
outcome. Variability in these outcomes can be more or less predictable; 
that is, cues available to an organism vary in how well they correlate 
with the true state of the world. For example, distinguishing predator 
from prey, moving from one food patch to another, or interpreting a 
visual scene all require inferring latent properties of the environment 
from environment cues. In each case, the available cues provide more 
or less predictive indicators of events. At one extreme, all mechanisms 
are equally robust in a completely random, maximally uncertain envi-
ronment. The presence of regularities, however, will mean that mecha-
nisms will be robust over certain ranges of variation at the expense of 
others (Geman et al. 1992). Thus, a key dimension of all forms of varia-
tion, and one which strongly infl uences robust design, is the degree of 
predictability.

4. Degree of  stationarity: Some forms of variation, such as the caloric 
content of alternative food items, will likely remain constant over time. 
They are stationary, in that the statistical properties (e.g., mean, vari-
ance) of the caloric content of specific foods remain constant over time. 
Other forms of variation, such as the where the food is located, will 
likely change over time. They are nonstationary in some combination 
of time and space. On the one hand, a temporal or spatial dependency 
can be seen as another cue and simply an additional source of uncer-
tainty which renders events predictable to a greater or lesser extent. On 
the other hand, both the prevalence and signifi cance of nonstationary 
properties of environments suggests that they are worthy of study in 
their own right. For example, the balance struck by an organism when 
facing the trade-off between  exploration and  exploitation will likely 
depend on how, and to what extent, the environment changes over time 
and place (e.g., McNamara and Houston 1985b). In this way, it is not 
only environmental variability but also variability (nonstationarity) in 
environmental variability that is a dimension on which it is relevant to 
consider robustness.
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5. Social determinants of variation: Social variation arises from the ac-
tions of other agents, rather than, say, nonsocial variation (e.g., the 
caloric content of food items or seasonal variation). Although the di-
viding line between social and nonsocial environments can often be un-
clear, the social environment nevertheless introduces forms of variation 
which would otherwise be absent (Hertwig et al. 2012), and therefore 
it is also germane to considerations of robustness. Strategic, game-the-
oretic settings represent one class of variation in which other individu-
als’ behaviors depend on the agent’s own actions. This contingency can 
result in complex and dynamic variation in the social environment. The 
human linguistic environment is a striking example, as the generative 
nature of human  language continually leads to the creation of novel ut-
terances and the evolution of interpretation of meaning (Brighton et al. 
2005). Just as the consumption of food and water resources by others 
will infl uence the hunting and gathering decisions of organisms, the 
communicative acts of others can infl uence interpretation, understand-
ing, and decision making.

The existence of multiple types of environment, affording different opportuni-
ties, allows for the possibility of modeling the environment. This can be done 
by setting hyperparameters in parameterized algorithms (i.e., parameters that 
describe the possible distribution of other lower-level model parameters which 
may, in turn, describe distributions of resources within the environment) or by 
employing preprogrammed modules when these have been hard-wired. The 
trouble with the latter is choosing between modules and organizing learning 
within the modules. Modules may or may not compete; an example of the 
latter is when modules process different information about the same underly-
ing quantities. Generic strategies may exist to cope with these opportunities; 
for instance, apparent over-optimism ( exploration bonuses; Kakade and Dayan 
2002) in the face of ignorance, followed by over-caution in the case of disaster. 
Robust exploration methods, such as regret bounds for bandit problems (Auer 
2003), are another possibility, with attractive, though sometimes suboptimal, 
characteristics. Representational learning, such as prolonging development so 
that the representations of the world on which decisions hang can be adapted to 
the prevailing statistical properties (see Dayan and Abbott 2001, chapter 10), is 
a further critical form of robustness.

Evolutionary Selection Pressures

There would be no evolutionary selection pressures to produce  robustness un-
less population members experienced  environmental perturbations. Thus we 
might expect the robustness of current decision mechanisms to be positive-
ly correlated with the degree and dimensionality of ancestral perturbations. 
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However, even when there are  perturbations, whether we expect robustness to 
evolve depends on the particular perturbations and the performance measure 
considered, as the following examples illustrate.

Case 1: Amount of Food Obtained Each Day during the Winter

Consider a small bird or mammal that is trying to survive the winter. This 
animal has a very limited ability to store food as fat, and so must get enough 
food each day or it will die. Suppose that food availability varies from day to 
day. Then we might measure the performance of a foraging rule that the animal 
might use as the amount of food found for each level of food availability when 
using this rule. Some rules may do well on average, some may be especially 
good when food is plentiful, and some may be very effi cient at fi nding food 
when food is scarce. Unless a rule has reasonable performance on each day 
during the winter, the animal will not survive the winter. Thus we would expect 
natural selection to produce foraging rules that maintain the capacity to fi nd 
suffi cient food each day, despite adverse environmental perturbations (i.e., we 
expect the evolution of rules that are robust given our performance measure).

Case 2: Number of Surviving Offspring Produced in a 
Breeding Attempt (Demographic Stochasticity)

Consider a hypothetical female bird that breeds once a year. During breeding 
she decides whether to lay one or two eggs. After the eggs hatch, the chicks 
tend to attract predators through their call. Thus, the more eggs the female lays, 
the greater the probability that a predator will fi nd the nest and kill all of the 
offspring. Suppose that a predator may be present in the local area or not; each 
event will occur with a fi xed probability. If no predator is present, then each 
egg laid results in a mature offspring. If a predator is present and the female 
lays one egg, then the predator fi nds the nest with a low probability. If she lays 
two eggs, the predator fi nds the nest with a higher probability. We assume that 
whether this female’s eggs survive is independent of what happens to other 
breeding individuals (demographic stochasticity). Here our performance mea-
sure is the number of surviving eggs. The environmental conditions are wheth-
er a predator is present. Table 12.1 gives a numerical example.

In this setting we expect natural selection to favor the egg-laying strategy 
that maximizes the expected (average) number of surviving offspring. Suppose 
that the predator is present with probability 0.5. Then laying one egg will result 
in (0.9 + 1)/2 = 0.95 surviving offspring on average; laying two eggs will result 
in (0.2 + 2)/2 = 1.1 surviving offspring on average. Thus the laying of two eggs 
will be favored by selection. Note, however, that this strategy is not robust in 
that few offspring survive when the predator is present.
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Case 3: Numbers of Surviving Offspring (Environmental Stochasticity)

Consider an annual plant species. Every year in the spring, a seed will either 
grow or remain dormant in the ground for another year. The decision of wheth-
er to grow or not is made before environmental conditions are known for that 
year. Conditions during growth can be “Good” or “Bad”; most years are Good. 
If it is a Good year, a germinating seed grows to a mature plant during the sum-
mer, produces many seeds, and then dies. If it is a Bad year, a germinating plant 
dies. Seeds that remain dormant are not affected by the type of year. A strategy 
for a plant specifi es the proportion of its seeds that germinate each year.

We can take the performance measure to be number of seeds in the ground 
next winter that are descendants of a seed that is in the ground this winter. 
Consider fi rst the performance of the strategy of having all seeds germinate. 
This strategy does very well in Good years, leaving many descendants, but 
leaves no descendants in Bad years. Since most years are Good and a mature 
plant produces many seeds, this strategy maximizes the mean number of de-
scendant seeds left next year per current seed. However, any genotype that 
coded for this strategy would be wiped out in the fi rst Bad year—so this strat-
egy would not evolve. Instead, we expect a bet-hedging strategy to evolve: 
some seeds germinate, others remain dormant as insurance against Bad years 
(Cohen 1966). This strategy would be favored over immediate germination 
because it is more robust against seasonal variation.

General Discussion

In both Cases 1 and 3, there will be selection for robust strategies because of 
multiplicative effects. In Case 1, the probability of overwinter survival is the 
product of the probabilities of survival on each day. In Case 3, the number of 
descendants left far into the future is the product of the numbers left from year 
to year. In general, whether effects are multiplicative or additive depends both 
on the performance measure and on the spatial and temporal structure of the 
environment (McNamara et al. 2011).

At the other extreme, there can be selection to take risks. For example, in 
elephant seals a few males are able to monopolize most of the breeding fe-
males; thus, it may be worth it for a male to take big risks to become dominant. 

Table 12.1  Number of surviving offspring per year in nests with one and two eggs de-
pending on whether a predator is present. The probability a predator detects a nest with 
one egg is 0.1; the probability that it detects a nest with two eggs is 0.9. The probability 
that a predator is present is 0.5.

One egg Two eggs
Predator present 0.90 0.20
Predator absent 1.00 2.00
Average over conditions 0.95 1.10
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In situations where the current habitat properties are unknown, there may be 
selection to be “optimistic” and take a risk that it is a good habitat (McNamara 
et al. 2011). In these cases there is no selection for robustness. In fact, adaptive 
strategies are far from robust.

In general more modeling work is needed on the question of whether it is 
adaptive to be  robust. In the construction of models, it is important to broaden 
the worlds that are considered. It is impossible to build models of the real 
world. Nevertheless, more complexity is needed than has been used in most 
previous work. For example, consider the  foraging strategy of a small bird that 
must gain enough energy to survive the night. If we model a world in which 
the bird “knows” the availability of food, and knows it will not change during 
the day, we get one prediction about risk-sensitive foraging. If we allow for 
uncertainty and change, we get another that is more robust (McNamara 1996).

Overfi tting

Natural selection shapes the strategies of population members so that they are 
roughly adapted to the local environmental conditions experienced by ances-
tors. Mutation tends to work against this process, so we would expect the more 
recent past to have a greater influence than the more distant past on current 
population strategies. There is a tendency to “ overfit” in that current individu-
als are adapted to the recent past and may not be adapted to future environ-
mental conditions.

As an example, consider an environment that is stable apart from the occa-
sional El Niño year. (El Niño is a warming of Pacifi c Ocean surface tempera-
tures that occurs approximately every five years and influences global weather 
patterns.) We would expect a different distribution of strategies immediately 
after an El Niño event than after a run of normal years. After an El Niño event 
the population is more adapted to another such event, although it is likely to 
be a normal year. Even if the environment is stable over evolutionary time, the 
experience of an individual over its lifetime is liable to be different in detail to 
that experienced by any of its ancestors; so there will even be a tendency for 
short-term overfitting in evolutionarily stable environments.

In the El Niño example, robust mechanisms might be able to deal well with 
both normal years and El Niño years. But what are the opportunity costs of 
robust decision mechanisms? In periods of more stable or predictable environ-
ments, individuals using a robust mechanism would show a gradual propor-
tional decrease in a population because there is no selection pressure for the 
robustness. Therefore, the timing of unpredictable events and the difference 
between the performance of other mechanisms compared to robust mecha-
nisms is critical.

In terms of moment-to-moment decision making, a strategy specifi es the 
rule by which an individual integrates its past experience in deciding how to 
respond to current stimuli. In a complex world, past experience is liable to be 
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unique in detail. Thus, the decision-making rule is dealing with a situation 
never experienced by any of its ancestors. How well it copes with this situ-
ation depends on the robustness of its rule.  Overfi tting will tend to produce 
rules that are not robust. This is analogous to statistical overfi tting of data, in 
which over-parameterized models fi t noise rather than the underlying pattern 
(cf. Goldstein and Gigerenzer 2009). Whether overfi tting occurs may depend 
on the statistical properties of the environment, the learning capacities of the 
agent or organism, and the classes of rules on which selection acts. To the 
extent overfi tting is likely to result in fragility (non-robustness), more general 
processes will be adaptive and likely selected, if they are able to evolve before 
catastrophe strikes.

Psychological Mechanisms and Robustness

Optimality modeling can tell us about broad selection pressures acting on the 
robustness of behavioral strategies, but to understand the fi ne detail we need to 
consider underlying psychological mechanisms (McNamara and Houston 2009).

There are both external and internal factors associated with robustness. 
For the former, from a computational or functional perspective, it can be use-
ful to consider separating the chance of substantially negative outliers from 
the opportunities associated with variable, but typically benefi cent, environ-
ments. Learning ontogenetically in the face of looming catastrophe would be 
highly maladaptive; therefore we have hard-wired, evolutionarily programmed 
mechanisms that tell us what to do. These can also be considered to be heuris-
tics,  rules of thumb (Hutchinson and Gigerenzer 2005), or modules (Kurzban, 
this volume). It is not clear how mutable they are in the light of experience 
(e.g., can we learn to climb some particular tree to fl ee a bear) or how generic 
policies (approach/withdrawal) interact with specifi c ones. We can use notions 
from control theory as ways of formalizing the effects of outliers (Doyle et al. 
1989; Wald 1945). Finding ways to study these modules and getting insights 
into their historical appropriateness is an important task, lest this critical part 
of the architecture be just arbitrary. One route might be to compare defense 
mechanisms across species (Bolles 1970).

Some have distinguished at least two mechanisms of the internal environ-
ment that pertain to robustness:  model-based and  model-free control mecha-
nisms (see Dayan, this volume). These controllers have different abilities to 
work in the face of computational and statistical uncertainty. Each embod-
ies prior information in different ways (model-based control in a much richer 
manner than model-free control) and so can adapt to environments differently. 
A challenge is that the controllers interact richly, making it hard to tease apart 
their individual contributions.

From “Evolution and the Mechanisms of Decision Making,” edited by Peter Hammerstein and Jeffrey R. Stevens. 
2012. Strüngmann Forum Report, vol. 11, J. Lupp, series ed. Cambridge, MA: MIT Press. 978-0-262-01808-1. 



Robustness in a Variable Environment 209

The Cost-Benefi t Trade-offs of  Robustness

From an engineering standpoint, building robustness with respect to one di-
mension generally carries some sort of cost elsewhere for the system. For ex-
ample, robustness to damage can be gained from adding redundant backup 
systems that mirror the functionality of primary systems. This approach is 
commonly used when primary system failure can lead to very costly outcomes, 
as in the case of hospital power generation systems and expensive and sophis-
ticated machines, such as the space shuttle.

Thus, robustness generally entails a cost-benefit trade-off: the cost carried 
by the means used to gain robustness trades off against the benefit of the robust-
ness gain. In the case of redundant systems, the benefit is gaining robustness to 
failure of the primary system, but at the additional cost of the backup system. 
Similarly, robustness to different dimensions of  environmental perturbation 
trades off against one another. For instance, in designing an airplane, one might 
choose to include a redundant hydraulic system so that if the primary system 
is disabled (e.g., by a bullet or by a material fatigue-induced structural failure), 
the backup system can be relied upon to maintain the airplane’s function. This 
increases survivability, which is a benefit. However, this benefit is achieved 
at the cost of maneuverability, due to the weight increase that results from the 
inclusion of the extra equipment.

Similarly, achieving robustness in biological systems generally carries some 
cost, often in the allocation of energy for the tissue required to increase robust-
ness. The human ability to recognize faces is robust with respect to things such 
as viewing angle, lighting conditions, and so on. This, presumably, requires 
expensive nervous tissue to implement this functionality (for a discussion of 
the costs and benefits of larger brains, see Chittka and Niven 2009). Adding 
robustness, in this and other senses, can be understood as imposing some cost 
that must be made up either by sacrificing energy in some other domain or with 
additional collection of energy.

Costs can come in any number of forms. Consider a system that samples 
the environment in order to estimate some parameter, such as the mean of the 
distribution. Sampling from a large number of instances reduces the error (i.e., 
increasing the robustness of the estimate). However, reducing the error this 
way increases the time and energy spent sampling (Kareev, this volume).

The trade-offs inherent in achieving robustness help to explain why sys-
tems cannot be universally robust across all possible dimensions. Though there 
might be other reasons (e.g., phylogenetic constraints, local minima), selection 
will generally favor robustness mechanisms for which marginal robustness 
benefits outweigh their marginal costs, whatever those costs must be. Because 
many different robustness trade-offs must be addressed by any given design, 
selection can be understood to resolve a range of robustness trade-offs.

Note that robustness cannot be universally optimized because selection 
pressures change and there is uncertainty regarding the future environments 
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that organisms face. However, the same uncertainties that make  optimization 
impossible can and do result in both artifi cial and natural forms of “ tolerance 
buffering,” which serves to increase the robustness of the system to variation. 
For example, when designing and constructing a bridge, engineers build in a 
degree of safety margin assuming certain standard and extreme stresses. This 
is an intentional buffering for robustness that is possible in domains charac-
terized by decision makers that are goal-directed, creative, and purposeful. 
Natural selection is characterized by fi tness to the environment rather than 
creative intention, but we also see tolerance buffering in naturally selected bio-
logical systems. The liver, for instance, has substantially greater capacity than 
necessary for maintenance as well as the ability to regenerate or replace lost 
tissue. Robustness through excess capacity (for normal maintenance) is likely 
to prevail throughout biological design. While tuned to past environments in 
evolution and ontogeny, the capacity will often and at most times be in excess 
of that typically required to handle less common stress. There is an evolution-
ary advantage for mechanisms that buffer the system against higher levels of 
environmental variability, independent of whether the system is a natural or 
artifi cial one.

Robustness in Multi-Agent and Group-Level Decision Processes

The social environment offers  a unique set of issues for robust decision mak-
ing. Uncertainty associated with interaction with social agents may require 
robust mechanisms to cope with this variation. The strategic components of 
social interactions provide a particularly challenging environment for robust-
ness because mechanisms must be robust not to an independent environment 
but one that responds directly to the organism.

In addition to providing obstacles to robustness, social agents can also 
enhance robustness by using group decision making. Group living enables 
animals to address many problems that would be difficult or impossible for 
single individuals. For example, individuals in groups can catch bigger prey 
or better protect themselves against predators (Krause and Ruxton 2002). 
Groups can afford forms of  robustness that are not available to individuals. 
They permit things like learning from observation, which is another way of 
alleviating the requirement for individual acquisition (Oztop et al. 2006; see 
also Hammerstein and Boyd, this volume),  herding, and also group rather than 
individual exploration of parameter spaces.

The recent introduction of  self-organization theory into the behavioral sci-
ences has led to many case studies which show that group living can also facili-
tate better decision making. The solution of cognitive problems that go beyond 
the capability of single animals is known as collective intelligence or  swarm 
intelligence (Krause et al. 2010). A process definition is that two or more indi-
viduals independently, or at least partially independently, acquire information, 
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and these different packages of information are combined and processed 
through social interaction, which provides a solution to a cognitive problem.

There are many examples of swarm intelligence in invertebrates (particu-
larly in social insects) and more recently in vertebrates. The perception in most 
case studies (particularly in invertebrates) has been that the individual animal 
is cognitively relatively simple and restricted in what it can achieve, whereas 
the group collectively is capable of solving diffi cult problems.

One of the fi rst scientists to point out that individuals can benefi t from col-
lective decision making was the French mathematician and political scientist 
Nicolas de Condorcet. He assumed that each individual can either be right or 
wrong with a certain probability p. Provided that p(right) > 0.50, the probabil-
ity of a correct collective decision of the group will increase as a function of 
group size, provided that the individuals that have the correct information are 
in the majority in the population.

Subsequent research has demonstrated, quite counterintuitively, that swarm 
intelligence does not require a majority of individuals who know the correct 
answer or, in fact, any individual to know the correct answer. This was fi rst 
shown by Galton (1907) in an empirical study on humans based on what is 
now known as the many-wrongs principle (Bergmann and Donner 1964). 
The many-wrongs principle is often mentioned in the context of  navigational 
problems where navigational accuracy is predicted to increase as a function 
of group size (Simons 2004). The assumption underlying the many-wrongs 
principle is that all individuals have a common target destination, but that each 
individual navigates with some error. If group members average over their 
directional preferences (through social interaction), then the error with which 
the group moves toward the target decreases as a nonlinear function of group 
size. In the example by Simons (2004), individual errors followed a normal 
distribution. However, the principle of the many wrongs producing a good 
overall decision is not restricted to a particular type of distribution. As long as 
the mean of the individual vectors approximates the target direction, there are 
different types of distribution that could produce a similar outcome (i.e., reduc-
ing navigational error with group size). Thus, group decision making provides 
a robust response to individual errors in the estimates.

Collective decision making is usually robust to changes in the environ-
ment, outliers, and loss of group members, but it also has costs and is based 
on a number of prerequisites, one of which is independence of individuals. 
For instance, if all individuals in a group have the same bias, then no degree 
of  redundancy (i.e., no increase in group size) is likely to make the collective 
decision any better. In contrast, the greater the independence of individuals in 
a system, the greater the probability will be that (a) a solution will emerge and 
(b) decision-making quality will increase with group size.

The self-organized nature of  collective behavior is a form of redundancy 
that protects against failure of system components. Self-organization means 
that the decision-making process is decentralized and therefore less vulnerable 
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to localized damage than central-control systems, where the loss of only a few 
individuals can have a strong adverse effect if they are the leaders or central 
decision makers.

Robust Group Decision Making in Animals

In  honeybees, Apis melifera, workers perform different tasks which correlate 
with their age and development. Younger bees usually work inside the hive 
building cells and feeding larvae, whereas older workers collect nectar and 
pollen outside the hive. The colony functions best when there is a certain ra-
tio of bees to carry out the indoor and outdoor services. If, however, a large 
number of bees get killed while performing outdoor duties, then the colony 
can respond adaptively with younger workers developing more rapidly to take 
on outdoor tasks (Robinson 1992; Schulz et al. 1998). Likewise, if for some 
reason the number of young bees is drastically reduced, then older bees take 
up nest building tasks again. This process of worker allocation is not centrally 
controlled. It is achieved through the contact frequencies between the workers 
of different ages and task groups. During each contact between two workers, 
different hormones are exchanged; these hormones control worker develop-
ment and thereby regulate the ratio of indoor and outdoor workers (Huang et 
al. 1998). This example clearly shows how a self-organized process can allow 
a robust response to the loss of workers, not only through  redundancy but also 
through reorganization of task allocation.

Many examples of swarm intelligence come from the social insect litera-
ture, where  quorum sensing has been identifi ed as an important mechanism 
for decision making (some cases of quorum decision have been identifi ed in 
vertebrates as well; Ward et al. 2008). Insect colonies sometimes need to fi nd 
a new nest location because their old nest has either become too small or has 
been damaged. The problem that the colony needs to solve frequently takes 
the form of a complex trade-off between speed and accuracy of decisions. A 
proportion of scouts (individuals that explore the surroundings for suitable nest 
locations) leave the nest and, if successful, these individuals then try to recruit 
others to the new potential nest location they encountered. After the number 
of individuals in support of a particular nest location reaches a threshold (i.e., 
a quorum), the entire colony will favor this location (Franks et al. 2009). If 
speed is important, then the quorum threshold can be low, resulting in lower 
accuracy and reducing the probability of deciding in favor of the best new loca-
tion among the available options. If speed is not a constraint, then the quorum 
threshold can be high and accuracy is increased (Franks et al. 2009). A similar 
type of quorum-based decision making has also been described in fi sh shoals 
that have to make a decision about which path to take to avoid danger or which 
leader to follow (Ward et al. 2008).
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Group Decisions and Robustness in Science and Technology

One of the richest areas for research and application in group decision making 
is in science and technology. These communities have sophisticated method-
ologies for combining inputs from different sources to construct solutions or 
answers that are more robust, more reliable, and less prone to error. When 
software is sent out for beta-testing, a substantial population of unpaid testers 
explore it under diverse conditions, refl ecting their diverse interests, and report 
failures that are used to produce corrections incorporated in the released ver-
sion. This could be seen as a richer and more sensitive extension of the meth-
odologies discussed above for decision making in groups.

In scientifi c investigations, it is standard to assume that a measurement or 
result derived using two or more different modes of instrumentation is more 
reliable, and that cross-checking in this way is commonly expected and ac-
cepted as a test for the “reality” or “non-artifactuality” of the measurement, 
result, or detected property or entity (Soler et al. 2011; Wimsatt 1981). Levins 
(1966) talks about “robust theorems”—results derivable in diverse models of a 
phenomenon using different assumptions, which thereby do not depend upon 
the details of the various specifi c models. Campbell (1958, 1966) talks about 
the importance of “triangulation” using different methods, and Campbell and 
Fiske (1959) expound the use of a “multi-trait, multi-method matrix” to cor-
rect for biases in methods of measurement or bad choice of indices for a trait. 
Physicist Richard Feynman (1967) contrasts “Babylonian” vs. “Euclidean” 
formal methodologies and argues the advantages of the multiply connected in-
ferences in the former over the minimalist serial inferences of the latter. These 
all result in methods of scientifi c inquiry that provide robustness to the vaga-
ries of individual biases in model creation and data collection.

In the larger social structure of science, demands for  repeatability, public 
disclosure of methods, and the peer review system are all attempts to secure 
greater reliability through robustness. Are these methods foolproof? Of course 
not. If the various methods fail to be independent in relevant respects, this can 
compromise results. Wade (1978) reviewed twelve different models of group 
selection by various authors, representing advocates and opponents of group 
selection, including some of the most distinguished evolutionary biologists. 
His study demonstrates that their near-universal claims to show (robustly) that 
 group selection is not a signifi cant force is undercut by the fact that the models 
shared fi ve simplifying assumptions that were (a) false and (b) each biased the 
case against group selection. Wimsatt (1980) analyzed these cases and found 
that the biased assumptions are products of simplifi cations resulting from heu-
ristics used in reductionistic methods of formulating and solving problems, 
paralleling earlier work by Tversky and Kahneman (1974) on heuristics and 
biases in probabilistic inference. Any purported case of robustness is corrigible 
by demonstrations that the methods are not independent, or as Levins (1966) 
would say, “not a representative sample from the space of possible models.”
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This domain suggests that case studies of scientifi c inference, technology 
testing, the organization of laboratories, and the composition of peer review 
panels all provide rich possible sources for understanding methodologies for 
generating and testing robustness in group decision making. We would like to 
know particularly how such methods may fail, and how induced biases might 
be detected and corrected.

Concluding Remarks

Robustness is an integral concept in the evolution of biological organisms and 
nonbiological systems, and a principal driver in the evolution of different deci-
sion-making and control mechanisms. To understand the evolutionary origins 
of decision mechanisms, therefore, we must address the nature of robustness, 
the nature of environments, and the costs and potential benefi ts associated with 
robustness in these environments.

In this chapter we have highlighted a number of issues that are central to 
robustness. For example, we have argued that in organisms,  redundancy in the 
mechanisms of decision making is often not achieved by duplicating mecha-
nisms but rather through the cooperation and competition of somewhat dif-
ferent mechanisms. Our primary emphasis has been on the extent and type of 
variation that individual organisms or technologies face. This variation pro-
vides a source of perturbation and is therefore central to whether we expect 
natural selection to produce optimal strategies, fl exible strategies, and/or ro-
bust strategies. Selection acts on the underlying psychological mechanisms 
which must implement the behavioral strategy, and different mechanisms are 
robust to different sorts of environmental perturbation and may have different 
costs. We have highlighted how robustness can be achieved via multi-agent 
decision making, in the hopes that this discussion will stimulate further study 
into these important issues.
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