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Abstract

Behavioral theories of intertemporal choice involve many moving parts. Most descriptive theories model how
time delays and rewards are perceived, compared, and/or combined into preferences or utilities. Most behavioral
studies neglect to spell out how such constructs translate into heterogeneous observable choices. We consider
several broad models of transitive intertemporal preference and combine these with several mathematically for-
mal, yet very general, models of heterogeneity. We evaluate 20 probabilistic models of intertemporal choice using
binary choice data from two large scale experiments. Our analysis documents the interplay between heterogene-
ity and parsimony in accounting for empirical data: We find evidence for heterogeneity across individuals and
across stimulus sets that can be accommodated with transitive models of varying complexity. We do not find
systematic violations of transitivity in our data. Future work should continue to tackle the complex trade-off
between parsimony and heterogeneity.
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1 Introduction

A dieter must choose between the immediate gratification of a waistline-expanding piece of cake or the longer-
term health benefits of fruit. A business manager must choose between developing projects with ‘low-hanging
fruit’ or investing time, personnel, and money into achieving long-term goals of the firm. From diet choices to
large-scale organizational decisions, all such intertemporal choices involve options available at different points in
time (Read, 2004). In this paper, we consider binary choice between one delayed reward and another that is
larger in size but also requires a longer wait. Such pairwise choices are highly heterogeneous in that they vary
across decision makers and within a given decision maker over repeated decisions within even short time periods.

Economists and psychologists have developed dozens of models for intertemporal choices aimed at under-
standing how decision makers trade off between smaller, sooner and larger, later rewards. Most of these are
temporal discounting models that generate a subjective present value for an option discounted by the time delay
to receiving the reward. For instance, $100 in one year is less valuable than $100 in a week, which, in turn, is still
less valuable than $100 today. Discounting models that map rewards and time delays to numerical subjective
values of time-delayed rewards, such as exponential and hyperbolic discounting, imply transitive preferences
according to which a person preferring x to y and y to z must prefer x to z (see, e.g., Doyle, 2013; Doyle and
Chen, 2012; Ebert and Prelec, 2007; Frederick et al., 2002; Green and Myerson, 2004; Killeen, 2009; Laibson,
1997; Loewenstein and Prelec, 1992; Mazur, 1987; McClure et al., 2007; Samuelson, 1937).1

The study of the fundamental nature of intertemporal preferences faces a profound challenge. Existing tests of
intertemporal choice theories rarely account explicitly for heterogeneity in behavior within and between people.
It may not be possible to select a ‘good’ theory of intertemporal choice unless this theory jointly accounts for core
preferences and heterogeneity in behavior. In our view, if we are to understand intertemporal choices, we should
develop a rigorous approach that incorporates individual differences, variability in choices, and generalizability
across stimuli. Therefore, rather than attend to the specifics of core preferences, such as the functional form of
discounting curves, and rather than seek out a ‘best’ theory, we focus in this paper on the complicated interplay
between parsimony and empirical variability. We also concentrate on transitive intertemporal preference and
how it manifests itself in probabilistic choice. Combining transitivity of preferences with the trade-off between
parsimony and variability fills a gap in the existing literature in intertemporal choice by zooming out to a broad
class of theories while zooming in to the sources and types of heterogeneity.

Accounting for heterogeneity comes at the cost of reducing model parsimony. Intuitively, an excessively
parsimonious model may only account for one choice made by one person at one time point for one particular
stimulus. Such an overly specific model is unlikely to generalize to other stimuli presented to the same person,
to other occasions on which the same person is presented with the same stimulus, to other individuals, and/or
to other stimuli. At the other end of the spectrum, a model that universally accounts for the behavior of all of
humanity, at all times, and over all conceivable intertemporal stimuli may have to be overly flexible. Clearly,
we need to aim for some sort of middle ground. It is therefore not surprising that much of the literature in
decision research, and intertemporal choice in particular, aims merely at modeling the prototypical decision
maker or at documenting trends and significant effects. Though this may be useful, it could also be inherently
misleading in that almost no actual person might act like that ‘prototypical’ decision maker. We unpack the
intimate connection between models of heterogeneity in preferences and in responses for transitive theories
of intertemporal preference. We also explore how adequate theoretical accounts may vary with the stimuli
used. We believe that careful attention to the nature and sources of heterogeneity is essential to advancing our
understanding of intertemporal choice.

Without a good theory of heterogeneity, scholars risk making too many modifications in the functional forms
of core theories in an effort to accommodate “discrepancies” between theory and data, when, instead, they should
model the sources of heterogeneity of behavior more explicitly. This paper provides a roadmap for accomplishing
the latter by formally spelling out two major sources of heterogeneity: probabilistic responses and probabilistic
preferences. We then show that these sources of heterogeneity can be incorporated into theories of intertemporal
choice at an abstract level. We take a big-picture perspective and tackle intertemporal choice at a somewhat
abstract level. We consider general classes of core models that share one or more of the features that 1) preferences
are transitive linear orders, 2) choice options are represented by numerical utilities, 3) strengths of preferences
are consistent with transitive preferences. Likewise, we consider general classes of probabilistic mechanisms for
pairwise choice, namely 1) aggregation-based models that encompass various response error models as special
cases and 2) distribution-free random preference, random function and random utility models that model the

1Other models, such as the “similarity” and “tradeoff” models, permit intransitive preferences (see, e.g., Read, 2001; Leland, 2002;
Rubinstein, 2003; Scholten and Read, 2006, 2010; Stevens, 2016; Manzini and Mariotti, 2006). Here, a person may prefer x to y and
y to z, yet prefer z to x for some x, y, z. A separate (companion) paper tests non-transitive heuristic models on different stimuli and
different respondents.
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preferences themselves as uncertain. This approach to heterogeneity is conceptually and mathematically different
from the common approach that aims to accommodate individual differences through refining the core functional
form of a theory, e.g., by adding extra parameters that permit specific kinds of flexibility in the core theory.
Instead, our approach resembles the literature on axiom testing in decision making in that we consider the
general axiom of transitivity together with general classes of probabilistic specifications.

A major strength of our approach is that it allows triage of entire classes of theories. Nonetheless, even within
this general and abstract paradigm of transitivity of intertemporal preference, the number of models to consider
is substantial, and different models differ dramatically in their parsimony. Furthermore, investigating the tradeoff
between parsimony and heterogeneity is computationally costly. Because we consider 20 probabilistic models
separately for 61 individual decision makers on six different stimulus sets, because we employ both frequentist
and Bayesian analysis methods, and because many of our analyses utilize either grid search or Monte Carlo
sampling methods, our analyses necessitated the use of supercomputing resources.2

We first discuss how to spell out a model of binary choice behavior for a person with transitive preferences. We
emphasize that, in contrast to the risky choice literature, the intertemporal choice literature has largely neglected
modeling the sources and types of uncertainty that underlie probabilistic behavioral data. We fill this gap by
introducing eight types of probabilistic choice models of transitive intertemporal preference. After we review
suitable statistical analysis methods and two experiments, we give an in-depth report on quantitative analyses at
the individual and group level. We particularly highlight how parsimony trades off with accounting for within-
and between-person heterogeneity. In contrast to previous such projects, we concentrate on intertemporal choice.

2 Transitive intertemporal preference and choice

In behavioral science, it is crucial not to mistake models of hypothetical constructs for models of observable
behavior. The literature on intertemporal choice engages in a thorough discussion about hypothetical constructs
such as preference or utility, while usually omitting a detailed model of observable behavior such as choice.
We review probabilistic choice models aimed at formally representing the uncertainty that is inherent in overt
behavior. We then walk through the step-by-step approach to design and test an explicitly specified theory of
pairwise intertemporal choice. Since any real collection of experiments can only utilize finitely many stimuli, we
assume throughout, and without much loss of generality, that the set of all choice alternatives under consideration
is finite. We also concentrate on the common experimental paradigm of pairwise choice between a larger reward
available with a longer delay and a smaller reward available with less delay.

2.1 Preference

Many models of binary preference between a larger, later reward L and a smaller, sooner reward S characterize
a three-component cognitive process: They specify implicitly or explicitly how a decision maker 1) subjectively
perceives time, 2) subjectively perceives rewards, and 3) subjectively perceives the interaction between time
and rewards. This permits them to define such hypothetical constructs as the pairwise preference among choice
options, the subjective value of an option, or the subjective strength of preference among pairs of options. In
addition, in order to actually predict or explain behavior, a model must specify how hypothetical constructs
such as subjective values or preferences translate into something one can observe, such as overt choice behavior.
Before discussing choice, we start by reviewing models of transitive intertemporal preference.

A broad class of theories for intertemporal preference uses numerical functions and operations on numbers
to model either subjective values of options or subjective strengths of preference among options. Suppose that
x is the option of receiving a monetary or nonmonetary reward A after a time delay t ≥ 0 (with t = 0 denoting
an immediate reward). Many numerical models, especially many discounting models, assume that reward A is
mapped into a numerical value via some value function v, that time delay t is mapped into a numerical value via
some time weighting function Ψ, and that these numerical values are combined into an overall numerical value
for x via some mathematical operation �, to yield an overall subjective numerical value u(x) for option x as

u(x) = v(A)�Ψ(t). (1)

2We ran the most computationally expensive analyses on Pittsburgh Supercomputer Center’s Blacklight and Greenfield supercom-
puters, as an Extreme Science and Engineering Discovery Environment project (see also Towns et al., 2014). The analyses in this paper
expended about 24,000 CPU hours on the supercomputer and more than a thousand hours on the PC.
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Using this representation, many models of intertemporal preference model the preference � as

L � S ⇔ u(L) > u(S), (2)

where L � S denotes that L is strictly preferred to S (see also Doyle, 2013, for similar formulations). Such a
binary preference relation � is transitive in that, for any options x, y, z, whenever x � y and y � z, it follows
from the right hand side of Condition 2 that x � z as well. The general approach (1)-(2) encompasses the vast
majority of theories for intertemporal choice, including the bulk of discounting models. Different implementations
of such theories vary in their assumptions about the specific functional forms of v and Ψ and the operation �:
Different theories use different functions v(A), oftentimes focusing on quantitative rewards A ∈ R+, such as
money,

v(A) =

 αA (often with α = 1, Samuelson, 1937; Mazur, 1984),
Aα (Killeen, 2009),
. . . ,

(3)

different functions Ψ(t),

Ψ(t) =



δt (Samuelson, 1937),
δtβ (Killeen, 2009),

1
1+δt (Mazur, 1984),

1
1+δtβ

(Mazur, 1987),
1

(1+δt)β/δ
(Loewenstein and Prelec, 1992; Green and Myerson, 2004),

e−(δt)
β

(Ebert and Prelec, 2007),
ωe−δt + (1− ω)e−βt (McClure et al., 2007),
. . . ,

(4)

and different operations �,

v(A)�Ψ(t) =

 v(A)×Ψ(t) (Samuelson, 1937; Laibson, 1997; Mazur, 1984),
v(A)−Ψ(t) (Killeen, 2009; Doyle and Chen, 2012),
. . . .

(5)

(The cited papers also provide permissible ranges for the parameters α, β, δ, ω in these functions.)
Even the two examples of v in Eq. 3, seven examples of Ψ in Eq. 4, and two operators � in Eq. 5 permit

2∗7∗2 = 28 different combinations. The intertemporal choice literature has generated a panoply of such models
for preferences, subjective values, or strengths of preferences. Most studies stop with the derivation of these
constructs and do not specify response mechanisms that convert hypothetical constructs into predictions about
heterogeneous overt choice behavior. Some scholars have recently started to incorporate stochastic specifications
of response processes into theories of intertemporal choice (Arfer and Luhmann, 2015; Dai and Busemeyer, 2014;
Ericson et al., 2015).

The fact that most theories of intertemporal choice are silent about the response mechanism is problematic.
Scholars in other domains, most notably in risky choice, have warned not to think of response mechanisms as a
mere optional add-on that one selects based on convenience or subjective taste of what constitutes an elegant
model (Carbone and Hey, 2000; Hey and Orme, 1994; Hey, 2005; Loomes and Sugden, 1995; Loomes et al.,
2002; Luce, 1959, 1995; Luce and Narens, 1994; Luce and Suppes, 1965; McCausland and Marley, 2014). Mis-
specification of response processes substantially affects conclusions about parameter values and readily distorts
the functional form of the underlying core algebraic model (Blavatskyy and Pogrebna, 2010; Stott, 2006; Wilcox,
2008). Mis- and over-specification also compromise one’s ability to predict future choices based on best-fitting
parameter values in a current study. An additional formidable challenge, compounded with the suitable selection
of response models, often lies in finding suitable statistical methods (Iverson and Falmagne, 1985; Myung et al.,
2005; Davis-Stober, 2009). Our models and methods tackle these challenges at a high level of generality. Rather
than look for a ‘best’ model, we focus on the interplay between heterogeneity and parsimony.

2.2 Preference and choice

We now review major model classes of probabilistic choice. We assume throughout the rest of the paper that
there are only finitely many choice options under consideration, hence we always only consider finitely many
binary choice probabilities.
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Tremble models build on the hypothetical construct of binary preference. They start from the premise that
the decision maker has a fixed “true” preference �, and that choice probabilities reflect a tendency to make
occasional errors in revealing the underlying hypothetical construct. In a tremble model, it is usually assumed
that the error rate for a given pair of options (x, y) is a free parameter εxy (Birnbaum, 2008; Birnbaum and
Navarrete, 1998; Harless and Camerer, 1994), so that the probability Pxy of choosing x over y is

Pxy =

{
1− εxy if x � y,
εxy if y � x, with, usually, 0 < εxy ≤

1

2
.

Similarly, Fechnerian models are based on the notion that a decision maker has a fixed “true” utility function, but
because of random noise, the decision maker reveals the underlying hypothetical construct only probabilistically.
In contrast to tremble models, Fechnerian models explicitly model error rates as a monotonically decreasing
function of the strength of preference, Sxy, with choices for strongly preferred options (large values of |Sxy|)
being close to deterministic and choices for extremely weakly preferred options (small values of |Sxy|) resembling
the toss of a fair coin (Hey and Orme, 1994; Manski and McFadden, 1981; McFadden, 2001; Thurstone, 1927).
According to a Fechnerian model, the binary choice probability is given by

Pxy = F
(
Sxy
)
, with F a cumulative distribution function and F (0) =

1

2
.

A logistic cumulative distribution function (CDF) yields the well-known logit model and a normal CDF yields
the probit model, respectively.3

The strength of preference Sxy, in turn, is another hypothetical construct, often derived from u using another

operation, 	, via Sxy = u(x)	 u(y). Examples include Sxy = u(x) − u(y) or, for u > 0, Sxy = ln
(
u(x)
u(y)

)
. The

latter is used in a historically prominent Fechnerian model called Luce’s Choice Axiom (Luce, 1959; Yellott,
1977), together with a unit-scaled logistic CDF, F (x) = 1

1+e−x , giving

Pxy =
u(x)

u(x) + u(y)
, with u(x), u(y) > 0.

These two response models, tremble and Fechner, treat the decision maker’s hypothetical constructs (prefer-
ence, utility, strength of preference) as deterministic, and they create response probabilities through the introduc-
tion of various concepts of “error.” Conceptually, they model heterogeneity in responses but not in preferences.
The Fechnerian models, because they are quite specific, work most naturally with a theory that is, likewise,
highly specific in its mathematical form, i.e., a model in which every component is spelled out in its full and
precise functional form. They also are only well-defined if they are given a numerical hypothetical construct as
input, such as the function u or the strength of preference S we have discussed above. Tremble models are less
specific and require no numerical input; binary preference relations suffice. In that sense, tremble models are
more flexible.4

The response models we reviewed so far have been generalized to a single broader class of “aggregation-
based” specifications, according to which binary choice probabilities yield the hypothetical core deterministic
preference at a suitably defined aggregate level (Regenwetter et al., 2014), such as “majority” (modal choice)
or “supermajority” aggregation. Here, a hypothetical construct is only describing aggregate behavior, not
necessarily every single choice made by a person. The key feature is that one or both of the following equivalences
hold in tremble and Fechner models:

x � y ⇔ Pxy >
1

2
⇔ u(x) > u(y). (6)

A person is more likely to choose what he prefers than what he does not prefer. In the most general case where
we consider all possible one-to-one functions u and, equivalently, all linear orders �, this representation is called
the weak utility model (Luce and Suppes, 1965). It is equivalent to[

Pxy >
1

2

]
∧
[
Pyz >

1

2

]
⇒
[
Pxz >

1

2

]
(for all distinct options x, y, z), (7)

3One can also derive binary logit and probit models within a random utility framework, discussed below, by assuming that random
utilities have extreme value or normal distributions, respectively.

4This makes them compatible with simple nonnumeric heuristics, for which Fechnerian models are ill-defined.



Heterogeneity and Parsimony in Intertemporal Choice 6

labeled weak stochastic transitivity, since the right hand side of Condition 6 forces � in the left hand side to be
transitive, and therefore Condition 7 must hold for the central term of Condition 6. Regarding the right hand
side equivalence of Condition 6, it is worth noting that it only requires that one specify the function u up to a
monotonic transformation. Hence, for testing, the weak utility model (6) is very general and inclusive. But for
estimation and prediction, it is not sufficiently specific to uniquely identify the function u used in most theories.

Another class of models, whose predictions overlap with, yet also differ from, aggregation-based specifications,
and which is built on different conceptual and theoretical primitives, are “random preference,” “random utility,”
and “random function” models (Becker et al., 1963; Block and Marschak, 1960; Loomes and Sugden, 1995;
Marschak, 1960; Regenwetter and Marley, 2001). These follow from the premise that the preferences and
utilities, rather than the responses, are probabilistic.

In a random preference model, one considers the collection R of all permissible preference relations, say, for
instance, R might denote the collection of all binary preference relations � that are consistent with Eqn. 1 and
Condition 2 using some core family of functions v, Ψ, and some core operation �, such as, say, v(A) = Aα,
Ψ(t) = 1

1+δt , and × for �. According to such a random preference model, there exists a probability measure P
on the set of all parameter values for α and δ, such that, for x giving A with time delay t and y giving B with
time delay s,

Pxy = P
(
{α, δ | u(x) > u(y)}

)
= P

({
α, δ

∣∣∣∣ Aα

1 + δt
>

Bα

1 + δs

})
. (8)

The most natural interpretation of a random preference model is that the decision maker, while fully consistent
with a given core theory, is uncertain about her preferences and acts in accordance with a probability distribution
over preference states that are consistent with that core theory, say, by sampling discount rates from a latent
distribution. The formulation in Eqn. 8 makes it clear that this model can also be interpreted as a random
function model (Regenwetter and Marley, 2001), since Eqn. 8 effectively makes P a probability measure on an
appropriately defined measurable space of utility functions.

To see how much random preference models differ from tremble and Fechner models, consider, for a moment,
the unusual choice between a larger, sooner and a smaller, later reward, a type of stimulus that is sometimes
inserted into a study for quality control. If the respondent does not select the larger, sooner reward, this
is sometimes interpreted as suggesting that he is not being attentive. Indeed, the random preference model
predicts deterministic behavior in such a case because, no matter what the specific parameter values α and δ,
the larger, sooner reward is preferred to the smaller, later reward: When A > B, t < s in Eq. 8, then the random
preference model in Eq. 8 yields Pxy = 1, regardless of the joint distribution on the values of α and δ. However,
neither tremble nor Fechner models predict deterministic choice for such stimuli. Simply put, whereas a Fechner
model derives probabilistic choice predictions from deterministic hypothetical constructs, a random preference
model may, in certain cases, derive deterministic choice predictions from probabilistic hypothetical constructs.

A closely related random utility model specifies that the subjective values assigned to options x and y are
uncertain. It captures this formally by defining jointly distributed random variables Ux,Uy to denote the
random utilities of options x and y. Using P to denote the probability measure governing the joint distribution
of the random variables Ux (over all options x), assuming P(Ux = Uy) = 0,∀x 6= y, according to the random
utility model,

Pxy = P(Ux > Uy). (9)

If, at every sample point of the underlying sample space, the joint realization of these random variables satisfies
Conditions 1-2 with Ux substituted for u(x), using a core family of functions v(A) = Aα, Ψ(t) = 1

1+δt , and ×
for �, then the choice probabilities in Eqns. 8 and 9 are the same. In particular, in such a random utility model,
Eq. 9 gives Pxy = 1 when x is a larger sooner reward.

Just like many discounting models in the literature specify particular functions v and Φ, so do many random
preference and random utility models specify properties of the probability measures P and/or the joint distribu-
tion of the random utilities. For example, the most commonly used random utility models assume multivariate
normal distributions (probit) or extreme value distributions (logit), oftentimes for mathematical and statistical
convenience. In both cases, Pxy < 1 in ‘quality control’ stimuli where x is a larger sooner reward. For very
‘similar’ stimuli, Pxy can, in fact, be ‘close’ to 1

2 . As we have seen earlier, these parametric random utility mod-
els are also Fechner models. However, the fully general class of random utility models makes no distributional
assumptions.
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2.3 Interplay between Preference, Choice, and Heterogeneity

Even just within the paradigm of models of the form u(x) = v(A) � Ψ(t) of Eqn. 1, we face a combinatorial
explosion of possible models. A fully specified model of binary choice probabilities for this paradigm states the
permissible functions v and Ψ and their permissible parameter values, as well as the permissible operations �, if
it is to fully detail the deterministic core hypothetical constructs. In addition, one needs to consider a suitable
response mechanism, such as, e.g., upper bounds on permissible error rates εxy, an operation 	, a distribution
function F . Or, if considering a probabilistic generalization of its core hypothetical constructs, it may need to
spell out distributional assumptions about random preferences or random utilities.5 The full range of these
considerations has received little attention in intertemporal choice research because the latter has primarily
focused on the algebraic core only.

For example, for monetary rewards, and u(x) = v(A) � Ψ(t), v(A) = A, letting � be the × operation,
Ψ(t) = δt, letting 	 be the − operation, and F a normal CDF Φ with mean 0, we obtain a Thurstonian
(aka probit) model of exponential discounting. Writing AL, AS for the larger and smaller rewards of L and
S respectively, and tL, tS for the corresponding longer and shorter time delays, preference among L and S is
deterministic, and responses probabilistic via

PLS = Φ
(
ALδ

tL −ASδtS
)
. (10)

In a random preference model, on the other hand, using the same deterministic core (but leaving out 	, which
it does not use), preferences are probabilistic, and responses deterministic, via

PLS = P
(
{δ | ALδtL > ASδ

tS}
)
, (11)

possibly with some constraints on the distribution of values of δ, say, a truncated normal distribution. Even
though they are both grounded in standard exponential discounting, these two models have very different moti-
vations: One is derived from assuming deterministic preference and probabilistic responses, the other is derived
from deterministic responses based on probabilistic preferences. These models also feature drastically different
mathematical properties, hence they make distinctly different predictions about behavior. In other words, not
only do they make different assumptions about the source and substantive meaning of heterogeneity, they also
generate different predictions about the type of heterogeneity of behavior one may observe.

Here, we are particularly interested in the types of heterogeneity different models permit. A probability
mixture of models each satisfying Eqn. 10 need not, itself, satisfy Eqn. 10: Consider 0 ≤ p1, p2, . . . , pk ≤ 1 with∑k
i=1 pi = 1 and let δ1, δ2, . . . , δk be distinct parameter values. Then, there generally does not exist a parameter

value δ such that

Φ
(
ALδ

tL −ASδtS
)

=

k∑
i=1

piΦ
(
ALδ

tL
i −ASδ

tS
i

)
,

which means that tests of this model cannot let choice probabilities change/drift excessively within a person
over the course of an experiment, and one cannot safely pool data across respondents who differ in their core
preferences. In contrast, mixtures of models, each satisfying the distribution-free form of Eqn. 11, do, in turn,
satisfy Eqn. 11: Consider 0 ≤ p1, p2, . . . , pk ≤ 1 with

∑k
i=1 pi = 1 and let P1,P2, . . . ,Pk be distinct probability

measures. Then there always exists a probability measure P such that

P
(
{δ | ALδtL > ASδ

tS}
)

=

k∑
i=1

piPi
(
{δ | ALδtL > ASδ

tS}
)
,

namely, P =
∑k
i=1 piPi. This means that these models permit high degrees of heterogeneity within and across

individuals. On the other hand, distribution-free models like the one in Eqn. 11 can be mathematically in-
tractable and most distribution-free random preference models require “order-constrained” statistical methods
(Regenwetter et al., 2011, 2014).

There is, however, also much potential for model mimicry among models that are, like these, derived even
from very different conceptual and mathematical primitives: While different probabilistic choice models make
different predictions, it is important to note that some of their predictions usually overlap. For example, both
Eqn. 10 and Eqn. 11 predict near-certain choice of L if ALδ

tL − ASδtS is very large in Eqn. 10 and if Eqn. 11

5For prior examples of such research programs, see Stott (2006) or Blavatskyy and Pogrebna (2010). These papers considered
various combinations of core theory and probabilistic specification in the domain of risky choice.
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places nearly all probability mass on δ-values for which ALδ
tL −ASδtS is positive. In general, however, neither

Eqn. 10 implies Eqn. 11 nor vice-versa, that is, neither model is a special case of the other.
The literature on discounting models has made it quite clear that every detail about v, Ψ, and � matters, and

many papers are dedicated to discussing the details of the deterministic core structure (Doyle, 2013; Frederick
et al., 2002). The literature on probabilistic response mechanisms, much of which has operated in empirical
paradigms outside intertemporal choice, has likewise highlighted that every detail about probabilistic response
mechanisms matters, because mis-specified response mechanisms lead to distortions of the deterministic core in
statistical tests and in statistical estimation. Many papers are, in turn, dedicated to discussing the details of
response mechanisms, primarily in risky choice (Birnbaum, 2011; Blavatskyy, 2011; Blavatskyy and Pogrebna,
2010; Hey, 2005; Iverson, 1990; Loomes et al., 2002; Luce, 1997; Stott, 2006; Wilcox, 2008). The intertemporal
choice literature has much to gain from taking a similarly comprehensive look at sources of heterogeneity and
how to model them beyond just refined deterministic cores.

Using the framework we provided above, one can select one or several specifications of hypothetical constructs,
and one or several probabilistic specifications, to construct a collection of competing models of pairwise choice
probabilities. One can then evaluate these competing models on suitably designed stimuli using the appropriate
statistical methods. Exploring, testing, and statistically estimating every possible combination of fully specified
deterministic and probabilistic components, even among a modest collection of cases like those we reviewed in
the previous two subsections, poses formidable challenges: 1) Because of the many moving parts in a fully explicit
theory, there can easily be thousands of combinations one may need to consider in a comprehensive analysis.
2) Models grounded in different or similar conceptual primitives need not imply the analogous similarities and
differences in their probabilistic and statistical properties. 3) Different models differ strongly in their a priori
flexibility to accommodate potential empirical data. 4) Parsimony in the model of hypothetical constructs can
be completely disconnected from parsimony of the resulting choice model: Models with a larger number of
parameters in the deterministic core need not be more flexible in their full probabilistic formulation. In fact,
they can easily be more parsimonious in the space of permissible probabilistic responses. Hence, the standard
approach of evaluating the parsimony of a theory by counting the number of parameters used by its deterministic
functional specification is only a coarse heuristic. 5) Allowing for individual differences compounds the complexity
and computational cost of reconciling preference, choice, and heterogeneity.

In light of these challenges, we proceed in a manner different from typical model selection approaches. Instead
of considering specific functional forms for preferences, as is common in the literature, we abstract away to a core
property shared by a large class of models for intertemporal preferences: transitivity of intertemporal preference.
In other words, we follow a long tradition of axiom testing as a method to triage viable theories. Instead of
considering specific functional forms of probabilistic response mechanisms, we abstract away to broad classes
of probabilistic choice models. We create a collection of twenty models of pairwise choice probabilities by (1)
varying whether we allow for one, some, or all transitive preferences, (2) varying whether we consider preferences,
choices, or both to be probabilistic, and (3) varying the upper bounds on error probabilities where applicable.
Applying these 20 models to several different stimulus sets and investigating their performance at both the
individual and collective level allows us to document in detail the tradeoff between heterogeneity and parsimony.

3 Probabilistic choice models of transitive intertemporal preference

We consider twenty probabilistic choice models of transitive intertemporal preference at various levels of parsi-
mony (see also Fig. 1). These twenty models form eight distinct model types. Four of these model types build on
the theoretical premise that preferences, utilities, or strengths of preference are deterministic and that responses
are probabilistic. These are the noisy-P (noisy patience), noisy-I (noisy impatience), noisy-PI (noisy patience-
impatience), and noisy-LO (noisy linear order) models, each of which we consider with three different bounds on
error rates. Two model types treat preferences as probabilistic and model responses as deterministic reflections
of those preferences. These are the random-LO (random linear order) and the random-LOT (random linear
order with tradeoffs) models. The other two model types are hybrids derived from the assumption that both
preferences and responses are probabilistic. These are the noisy-PI-mix (noisy patience-impatience mixture),
and the noisy-LO-mix (noisy linear order mixture) models, each of which we consider with three different bounds
on error rates.

Insert Figure 1 here
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3.1 Deterministic preferences revealed through a probabilistic response process

We first consider a simple model in which a decision maker’s preference corresponds to the linear order �A that
rank orders the choice alternatives from most to least desirable reward, no matter the time delay. A possible
reason for this could be that the differences in time delays used in a given study might be perceived as negligible,
compared to the relative attractiveness of the rewards. Hence, this preference ordering could derive from a more
highly structured mathematical model like the general class of models (1)-(2) we reviewed earlier: For example,
the functions v and Ψ of u = v � Ψ might yield the linear order �A on the stimuli used in the study. For
one collection of stimuli in our experimental study (our “Set 5” stimuli), this is the case, for example, when
v(A) = A,Ψ(t) = 1

1+δt and � = ×, regardless of the discount parameter δ > 0: Hyperbolic discounting makes
very restrictive predictions about preferences for our Set 5. Alternatively, it could capture a simple “larger is
better, no matter when” heuristic on some domain of stimuli. It is natural to suspect that the model may be
limited to idiosyncratic data, i.e., it may only perform well for certain stimuli and certain respondents.

The noisy-P model. Suppose that possible rewards are linearly ordered. An example would be distinct cash
rewards, ordered from largest to smallest amounts. The noisy-P model (noisy patience model) states that the
decision maker facing L versus S chooses the larger, later reward, L, regardless of time delay, up to random
error. Formally, writing �A for the ordering of the options from best to worst reward and setting 0 < τ ≤ 1

2 as
upper bound on the permissible error rate,

Pxy

{
≥ 1− τ if x �A y,
≤ τ if y �A x.

(12)

Special cases of noisy-P: One possibility is a tremble model of �A, according to which a decision maker has
fixed preference �A and fixed probabilities εxy of making an error, with each 0 < εxy < τ. The noisy-P model
is more general in that only the upper bound τ on error rates is fixed, and error rates are permitted to vary,
subject to the upper bound constraint. Hence, the error rates are not assumed to be statistically identifiable,
nor are they assumed to be constant over time or across respondents. Alternatively, for monetary rewards, the
decision maker might have a (fixed) utility function u = v �Ψ, which, when constrained to the options used in
the study, happens to be monotonically increasing in the magnitude of the rewards. If L involves receiving AL
and S involves receiving only AS , with u > 0, a specific Fechnerian (probit) model could state

Pxy = Φ

(
ln

(
AL

α

AS
α

))
,

where Φ is a cumulative normal with mean zero. Here, the core theory models a decision maker consistent with
a concave exponential utility function for money with exponent α < 1, whose strength of preference is the ratio
of subjective utilities. This model is also nested in the noisy-P model with τ = 1

2 .
In sum, there are many possible ways to construct examples of the noisy-P model from either very specific or

rather abstract assumptions about the subjective perception of rewards, the perception of time, the perception
of the interplay between rewards and time, as well as a multitude of response mechanisms. No matter the details
of such a construction, the model describes a patient decision maker with a deterministic core preference �A
and noisy responses.

The noisy-I model. The noisy-I model (noisy impatience model) states that the decision maker chooses the
smaller, sooner reward, S, regardless of the reward magnitude, up to random error. Formally, writing �t for the
ordering of the options from soonest to latest, and setting 0 < τ ≤ 1

2 as upper bound on the permissible error
rate,

Pxy

{
≥ 1− τ if x �t y,
≤ τ if y �t x.

(13)

Note that, for any S and L pair, we have S �t L and L �A S. As was the case for the noisy-P model,
the noisy-I model includes a multitude of nested submodels and, hence, abstracts away from a multitude of
models about subjective perceptions of rewards, time, their interaction, and response mechanisms. Despite these
abstractions, this model is rather restrictive in that it only permits one single core deterministic preference
relation.

The noisy-PI model. The noisy-P model and the noisy-I model are extreme cases where either only the linear
order of the options along the dimension of the reward or the dimension of time matters. A slight generalization,
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allows either �A or �t to be the underlying core deterministic preference, i.e., it has a free parameter � that
may take two ‘values,’ namely either �A or �t .

The noisy-PI model (noisy patience or impatience model) states that the decision maker is either consistently
patient or consistently impatient, for a given stimulus set. More precisely, she either consistently prefers L to S,
regardless of the time delays, or consistently prefers S to L, regardless of the monetary values, and chooses the
preferred option up to random error. Setting 0 < τ ≤ 1

2 as upper bound on the permissible error rate,

∃ �∈ {�A,�t} such that Pxy

{
≥ 1− τ if x � y,
≤ τ if y � x.

One attraction of this model is its potential to account for different stimulus sets in a very parsimonious
fashion: A person may be patient for all stimuli in some stimulus sets and impatient for all stimuli in other
stimulus sets. For example, for four of our stimulus sets, this model is a natural abstraction of hyperbolic
discounting, i.e., Ψ(t) = 1

1+δt , v(A) = A and � = ×. For our experimental stimulus collections labeled “Set 1”
through “Set 4,” hyperbolic discounting makes very restrictive predictions: In each case, regardless of the
discount parameter δ, the resulting preference is either �A or �t. However, one can specify a multitude of other
models that would predict either �A or �t, besides hyperbolic discounting.

The noisy-LO model. Moving beyond patience and impatience, we also consider richer models that permit
true trade-offs among reward and time. The first model of this kind permits every linear order as a core preference
(or, equivalently, permits every one-to-one utility function u). Like the noisy-P and noisy-I models, it features a
free parameter τ that can be interpreted as the maximal permissible error rate. With the most generous choice
of error bound, τ = 1

2 , this model becomes the weak utility model (6), one of the staple probabilistic models
used for testing transitivity of preferences in the literature (Tversky, 1969).

The noisy-LO model (noisy linear order model) states that there exists a fixed linear order � of the options,
such that the decision maker chooses in accordance with �, up to random error. The linear order in question is
unknown to the experimenter and must be inferred from the data. Formally, writing LO for the collection of all
linear orders of the options, and setting 0 < τ ≤ 1

2 as upper bound on the permissible error rate,

∃ �∈ LO such that Pxy

{
≥ 1− τ if x � y,
≤ τ if y � x.

The noisy-P model and the noisy-I model are both nested in the noisy-LO model: Since �A∈ LO and
�t∈ LO, if a person satisfies the noisy-P model or the noisy-I model then she also satisfies the noisy-LO model.
The noisy-LO model with τ = 1

2 is called “weak stochastic transitivity” (7) and the “weak utility model” (6) in
the literature (Becker et al., 1963; Block and Marschak, 1960; Luce and Suppes, 1965; Marschak, 1960). Weak
stochastic transitivity requires advanced order-constrained statistical methods (Iverson and Falmagne, 1985;
Myung et al., 2005)6 for a direct test. Tsai and Böckenholt (2006) tested a probabilistic intertemporal choice
model on data of Roelofsma and Read (2000) and obtained choice probability estimates consistent with weak
stochastic transitivity.7 Dai (2014) tested weak stochastic transitivity directly using order-constrained Bayesian
methods and found it to be well supported in an intertemporal choice task.

The noisy-LO model is clearly far less parsimious than the noisy-P model, the noisy-I model, or the noisy-PI
model since it is flexible enough to permit any linear order as deterministic core preferences (and any one-to-one
utility function u). On the flip-side, this may enable us to model more respondents and more types of stimuli.
At the same time, however, it is important to note that this model is highly sensitive to heterogeneity: Put
simply, if we randomly select decision makers who each satisfy weak stochastic transitivity, and we let them
make intertemporal choices, then their overall combined (pooled) choice probabilities typically violate weak
stochastic transitivity.8 In any probabilistic choice model with deterministic core preferences, heterogeneity
across individuals and/or across time is a recipe for havoc. The same problem applies to the special cases in
which linear orders are derived from functional forms: If a person’s parameter values within a fixed functional
form for, say, a discounting model, drift over the course of an experiment, then the person’s overall choice
probabilities may violate the noisy-LO model, even though every individual choice may have originated from

6As Regenwetter et al. (2011) discuss in the context of risky choice, there are many published papers with inadequate tests of weak
stochastic transitivity.

7Roelofsma and Read (2000) had interpreted their findings as evidence for intransitivity. Our R&R stimulus set uses stimuli similar
to those of Roelofsma and Read (2000) to bring all 20 of our models to bear on that debate.

8The weak utility model’s sensitivity to heterogeneous populations is historically known as the famous Condorcet paradox of social
choice theory (Condorcet, 1785).
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that model. The same applies to interindividual differences: If two decision makers satisfy, say, probit models
of hyperbolic discounting (i.e., models that satisfy weak stochastic transitivity), but they use different discount
rates, then their averaged choice probabilities need not satisfy a probit model of hyperbolic discounting at all,
and typically do not even satisfy weak stochastic transitivity.9

3.2 Probabilistic preferences revealed through a deterministic response process

Random preference and certain distribution-free random utility models start from fundamentally different
premises than the four models we have just discussed. Here, the decision maker is uncertain about which
option is preferable, yet, no matter which sample point of the underlying sample space is realized, the core
theory is fully satisfied. Conditional on the momentary preference, the response is error-free.

The random-LO model. Binary choice probabilities satisfy the random-LO model (random linear order
model) if there exists a probability distribution over linear orders such that the binary choice probability of
choosing L over S is the total probability of those linear orders in which L is preferred to S. Formally, let LO
denote the collection of all linear orders on a given set of choice options. Binary choice probabilities satisfy
the random-LO model if there exists a probability distribution P on LO, that is, 0 ≤ P(�) ≤ 1,∀ �∈ LO and∑
�∈LO P(�) = 1, such that

Pxy =
∑
�∈LO
x�y

P(�) (for all distinct options x, y).

This model is mathematically equivalent to the distribution-free random utility model (9) in that binary
choice probabilities satisfy one model if and only if they satisfy the other (Block and Marschak, 1960).

The random-LOT model. We consider one more random preference model, namely the case in which all
linear orders, except �A and �t are permissible preferences states. This model rules out the extreme cases of
completely patient or completely impatient preference states. Let LOT denote the collection of all linear orders
on a given set of choice options, except �A and �t, i.e., LOT = LO\{�A,�t}. Binary choice probabilities satisfy
the random-LOT model (random linear order with tradeoffs model) if there exists a probability distribution P
on LOT , such that

Pxy =
∑
�∈LOT
x�y

P(�) (for all distinct options x, y). (14)

This model can also be restated in random utility terms. Binary choice probabilities satisfy Eqn. 14 if and
only if there exist jointly distributed random variables, with Ux denoting the random utility of option x and
P denoting the probability measure governing the joint distribution, with P(Ux = Uy) = 0,∀x 6= y, such that

P
(⋂

r,s
r�As

Ur > Us

)
= 0 and P

(⋂
v,w
v�tw

Uv > Uw

)
= 0.

3.3 Probabilistic preferences compounded with probabilistic responses

We now consider a hybrid between the noisy-P model and the noisy-I model, and a hybrid of the random-LO
model and the noisy-LO model. They follow from the general theoretical premise that preferences and responses
are both probabilistic. Within an individual, this premise can capture the idea that the individual is both
uncertain about his preference and responds in a noisy fashion. At the group level, these models describe a
heterogeneous population of up to three types of decision makers: those with deterministic preferences who
respond in a noisy fashion, those with uncertain preferences who respond in a deterministic fashion, and those
with uncertain preferences who also respond noisily. We limit ourselves to the two extreme cases where either
only the two preferences �A and �t are permissible, or where all linear orders are permissible.

The noisy-PI-mix model. Let 0 < τ ≤ 1
2 be an upper bound on the permissible error rate. Let PAxy denote the

binary choice probabilities according to the noisy-P model (12) and let P txydenote the binary choice probabilities
according to the noisy-I model (13). According to the noisy-PI-mix model (noisy patience-impatience mixture
model), there exists a mixture probability p such that, in any given pairwise choice between L and S the person

9These observations follow trivially from the convexity or nonconvexity of various probability spaces.
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chooses according to the noisy-I model with probability p and according to the noisy-P model otherwise.10

∃p ∈ [0, 1] such that Pxy = pP txy + (1− p)PAxy,

where P txy

{
≥ 1− τ if x �t y,
≤ τ if y �t x,

and PAxy

{
≥ 1− τ if x �A y,
≤ τ if y �A x,

(for all distinct options x, y).

This model could, for example, model a population consisting of patient and impatient individuals only, with
each decision maker also potentially making errors in his choices. Within person, it can model an individual who,
for example, waivers between being patient and impatient, compounded with errors in her choices. This model
is particularly interesting in that it does not connect to, say, discounting models, as easily as others. In order
to satisfy this model, a population would have to consist of individuals whose discount rates are consistent with
only the two preference rankings �A and �t on a given set of stimuli. As a discounting model of an individual,
this would only allow discount rates according to which the individual either has preference �A or �t. In our
stimulus sets Set 1 - Set 5 (but not R&R), this is, indeed the case for hyperbolic discounting: As we have seen
earlier, hyperbolic discounting predicts �A or �t regardless of discount rate in those five stimulus sets. Other
discounting models predict a larger variety of preferences.

The noisy-LO-mix model. Our most complex (i.e., least statistically parsimonious) model permits a probabil-
ity distribution over all possible linear order core preferences, compounded with noisy responses. Let 0 < τ ≤ 1

2
be an upper bound on the permissible error rate, and ∀ �∈ LO, let p� denote the probability of making choices
according to a noisy process with � as core preference. Then the noisy-LO-mix model (noisy linear order mixture
model) states that

Pxy =
∑
�∈LO

p�P
�
xy with P�xy

{
≥ 1− τ if x � y,
≤ τ if y � x, (for all distinct options x, y).

The noisy-PI-mix model is a nested submodel of the noisy-LO-mix model, in which p�A = p = 1− p�t and
P�A = PA, as well as P�t = P t.

3.4 Summary of models

Figure 1 visualizes some of the similarities and differences between these models. Suppose that L is larger
and later than M , which is, in turn, larger and later than S. The coordinates of the 3D figure show binary
choice probabilities PMS on the vertical axis marked (M,S), PLM on the axis marked (L,M) from the origin
to the right, and PLS on the axis marked (L, S) from the origin to the left. The deterministic core preferences
correspond to corners (binary choice probabilities equaling 0 or 1) of the 3D cube. Despite being based on similar
core premises about the hypothetical constructs of preferences or utilities, the models differ dramatically in their
behavioral predictions. At the same time, probabilistic choice models that are built on different underlying
premises overlap in complex ways. While the figure shows correctly which models are nested (such as noisy-PI
in noisy-PI-mix), it is important not to over-interpret the 3D visualization with respect to the parsimony of
these models. Some of the models that appear to be relatively large in Figure 1 (such as random-LO) rapidly
become very restrictive in higher dimensions (i.e., they become more parsimonious when there are more than
three choice probabilities). Likewise, some models that are very restrictive on just three choice probabilities may
be less so in higher dimensions (e.g. random-LOT is only slightly more restrictive than random-LO in higher
dimensions).

Insert Table 1 here

Table 1 summarizes our models from a different perspective. The first column lists the model names, whereas
the second column shows the set of core preference states permitted by the core theory in each model. In
addition to the eight models above, we also consider a saturated model that places no constraints whatsoever on
binary choice probabilities. Its core theory is unconstrained in that it allows all (asymmetric) binary preference
relations as preference states. We denote the set of all such binary preferences by B. Columns 4 and 5 of Table 1
summarize whether preferences and responses are each deterministic or probabilistic. The last column gives each

10Note that our formulation of this model does not permit p to vary with xy. However, because it forms a convex set, the model
does allow some variation of p over time, including some degree of variation over repeated observations. Likewise, viewed as a model
of a population, it allows for inter-individual heterogeneity in the value of p.
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model a label that we use in our data analyses below. Models derived from probabilistic core preferences are
shaded with a gray background. Models with deterministic response processes are marked in bold.

4 Model specification for Bayesian statistical analysis

The premise of this paper is threefold: 1) There are many moving parts to a fully specified model of intertemporal
binary choice behavior, with much prior work discussing only unobservable hypothetical constructs in detail.
2) Different transitive models of observable intertemporal choice behavior vary in their parsimony. 3) We
expect a tradeoff between the parsimony of a model and the variety of individuals and stimuli for which it can
account, with the most parsimonious models likely working only for specific individuals and specific stimuli, and
a universal model for all individuals and stimuli likely requiring extreme flexibility. In line with these conceptual
expectations, we analyze our data from multiple perspectives. In contrast with most of the literature, our
analyses are custom-designed to account formally for various levels and types of heterogeneity and parsimony.

We report all our analyses in Bayesian terms here and provide frequentist (hypothesis testing) analyses in
the Supplementary Materials11. We use Bayesian p-values (Gelman et al., 1996) to assess model viability, Bayes
factors (Kass and Raftery, 1995) to compare models at the level of each individual respondent, and group Bayes
factors (Stephan et al., 2007) to aggregate Bayes factors across respondents. The magnitude of the Bayes factor
between two models is the degree of evidence in favor of one model over the other. Our application of these
methods to behavioral data follows similar recent analyses in the context of risky choice (Cavagnaro and Davis-
Stober, 2014; Davis-Stober et al., 2015; Guo and Regenwetter, 2014). In those studies, as in ours, models were
defined through systems of linear inequality constraints on binary choice probabilities. Because Bayesian model
selection requires that, in addition to constraints on choice probabilities such as those visualized in Fig. 1, the
models be cast via a likelihood function and a prior, we reformulate each set of inequality constraints using a
prior distribution with support over only those probability vectors that are consistent with the model in question
(see also Myung et al., 2005).

Formally, let C denote a collection of d distinct unordered pairs of choice options. For each pair {x, y} ∈ C, let

Pxy denote the binary choice probability of x being chosen from {x, y}, and let ~P = {Pxy}{x,y}∈C denote a ‘binary
choice probability vector’ (because each Pxy = 1−Pyx, we only use/count one of these two probabilities for each
pair {x, y}). Then, for each model q defined above, let Λq ⊆ [0, 1]d denote the subset of binary choice probability

vectors ~P satisfying the inequality constraints that characterize model q, and let vq denote the Lebesgue measure
(i.e., volume) of Λq. We construct the Bayesian model Mq with a uniform prior over the model, that is, with
the order-constrained prior distribution

π(~P |Mq) =

{
1
vq

if ~P ∈ Λq,

0 otherwise,
(for all ~P ∈ [0, 1]d).

Fully specified Bayesian models follow naturally by combining each order-constrained prior with a likelihood
function, defined as follows. Let Nxy denote the number of times that the pair of delayed rewards {x, y} is
presented to the decision maker, let nxy denote the number of times that x was chosen from {x, y}, and let
~n = {nxy}{x,y}∈C . Assuming that repeated choices from each option pair are identically distributed and that
all choices are mutually independent12, the likelihood function f for a set of responses ~n takes the following,
product-of-binomials form:

f(~P |~n) =
∏
x,y∈C

(
Nxy
nxy

)
Pnxyxy (1− Pxy)Nxy−nxy . (15)

In addition to the models we have already described, we also define a “saturated” model to serve as a common
baseline against which to compare each substantive model. This model puts no constraints on binary choice
probabilities, so it is defined by the prior π(~P | saturated model) = 1, ~P ∈ [0, 1]d; that is, a uniform prior over the
entire space of all choice probability vectors. This model is vacuous in the sense that it is guaranteed to fit any
set of data perfectly. In model selection analyses that penalize for complexity, this model will receive the largest

11Wherever both statistical approaches are applicable, our Bayesian and frequentist analyses are well aligned in the scientific con-
clusions that they support. The Bayesian approach is advantageous here: It naturally handles a situation like ours, in which some but
not all models are nested within each other, and some models differ strongly in their parsimony despite having the same number of
free parameters (here each model is characterized by 10 Binomials).

12In a Bayesian framework, the same likelihood function can be derived from different theoretical primitives about the data generating
process and the interpretation of Pxy. In particular, one may assume that repeated choices on the same option pair are infinitely
exchangeable and that choices on different choices pairs are independent. See Bernardo (1996) for discussion.
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penalty because it is maximally complex. The saturated model provides a common benchmark for measuring
the degree of evidence supporting or contradicting each substantive model. It also lets us define what it means
for a substantive model to fail: If a model’s Bayes factor against the saturated model is less than 1.0, then we
are better off using the saturated model (i.e., no model) than the substantive model. If the Bayes factors of all
our substantive models were less than 1.0, this would suggest that the data violated a fundamental assumption
shared by these models, such as, e.g., transitivity.

5 Experiment

We ran two studies aimed at evaluating the eight types of probabilistic choice models of transitive intertemporal
preference. Decision makers made pairwise choices between larger, later and smaller, sooner options. The
experiments were run in two locations: Urbana-Champaign in Illinois (USA) and Berlin (Germany). In each
location, we used six different stimulus sets to cover a range of different stimuli. One experiment collected enough
repeated choices for the same stimuli from each person (mixed with a large number of distractors) to permit
individual subject analyses. The other experiment drastically simplified the task by asking each respondent to
make each pairwise choice only once. Hence, the second experiment does not provide enough data from each
respondent for individual-level analyses.

5.1 Respondents

Respondent recruitment and testing took place at both the University of Illinois at Urbana-Champaign (UIUC),
and the Max Planck Institute for Human Development (MPI). UIUC respondents were university students and
local residents. MPI respondents attended a German university and chose to participate through their institute’s
experimental respondent pool. All respondents received monetary rewards based on choices they made during
the experiment and they only learned their reward amount after completion of the experiment. In accord with
payment standards at the University of Illinois, UIUC respondents also received an additional base payment
($12 for Experiment 1 and $8 for Experiment 2).

Before experimental testing, we selected a subset of trials from which all rewards would be paid. These pre-
selected trials all had relatively high reward amounts, thus ensuring sufficient remuneration. Each respondent’s
particular reward was determined by randomly selecting one of these pre-selected trials. Respondents were
not informed about the mechanism by which we selected stimuli that were used for payment and whether this
selection was made before or after data collection. Respondents were explicitly instructed at the beginning of
the experiment to make choices based on their true preferences because they would receive one of their chosen
time-delayed rewards as a real payment. We paid UIUC respondents with the exact delay specified (even if the
date fell on a weekend or holiday) by implementing a payment system via an agreement between the university
and Amazon.com. After the experiment was over, respondents provided an email address to which an electronic
Amazon gift code (matching the U.S. Dollar value of their chosen reward) was sent on the specified calendar
day in the future (matching the delay of their reward). The MPI offered respondents two options at the end of
the study. If the real reward was an option that included a positive time delay, respondents could opt to receive
85% of the amount in cash immediately instead of waiting for the delayed full reward. Respondents were not
told that they could substitute this immediate payment until they had completed all choices. If they opted for
the full delayed reward, they received it after the specified delay through a bank transfer in euros.13

For Experiment 1 (at UIUC), we tested 31 respondents (14 males, 17 females) from June-October 2012 with
a mean±SD age of 20.8±2.4 years (range 18-28). At MPI, we tested 30 respondents (16 males, 14 females) from
June-July 2012 with a mean±SD age of 25.6±3.7 years (range 20-34). For Experiment 2 (at UIUC), we tested
34 respondents from September-November 2013. Age and gender of these respondents was not recorded. At
MPI, we tested 30 respondents (10 males, 20 females) from November-December 2013 with a mean±SD age of
25.3±2.6 years (range 20-30).

5.2 Experimental procedure

The UIUC Institutional Review Board and the Ethics Committee of the MPI reviewed and approved both
experiments.14

13The Supplementary Materials provide the instructions to respondents and the stimuli used for real payment.
14University of Illinois at Urbana-Champaign, IRB approval #11427.
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5.2.1 Procedure

Respondents completed the experiments on computers. UIUC respondents saw English text and U.S. dollars
for currency, whereas MPI respondents saw German text and euros for currency but identical numbers as did
the U.S. respondents (not currency-converted values). Respondents could first provide their age, gender, and
occupation.15 They then read one set of instructions, completed 10 practice trials, and then read a final set of
instructions before beginning the actual trials. This final instruction set informed each respondent that their
reward at the end of the experiment would be determined by one of the choices made during the study. For
each trial, the respondents used a computer mouse to select one of two options presented on the screen, each
characterized by a specified reward amount and a time delay. At the end of the experiment, respondents were
then shown the reward that they were going to receive.16

Experiment 1 consisted of two sessions with 1,006 trials each (including 6 warm-up trials). At UIUC, re-
spondents completed the two sessions of Experiment 1 on two different days. MPI respondents completed the
two sessions for Experiment 1 on a single day, separated by a 5-15 minute break. Each session of Experiment 1
took respondents 30-90 minutes to complete. While Experiment 1 was designed to elicit enough information
from each person to permit within-respondent data analyses, Experiment 2 was aimed at collecting the same
kind of data with a much smaller number of trials, for a joint analysis of all respondents combined. It had a
single session with 106 questions (6 of them warm-up trials) and took respondents 10-30 minutes to complete.
Respondents in Experiment 2 saw the same questions as respondents in Experiment 1, except that none of the
items were repeated.

5.2.2 Stimuli

We created six option sets. Sets 1 - 5 each consisted of five intertemporal options (top of Table 2). The sets
varied in the magnitude and spread of monetary amounts (stated in $ and e) and in the magnitude and spread
of time delays (stated in days). For each set of five options, we created all 10 possible pairwise combinations of
options to create 10 different option pairs per option set. Across all five sets of stimuli, this resulted in a total of
50 option pairs. We also used an additional collection of nine option pairs. We adapted one triple from stimuli
in Roelofsma and Read’s (2000) study of intransitivity in intertemporal choice, and two additional such triples
were similar but varied and expanded the range of reward amounts. This sixth stimulus set of nine option pairs
is labeled R&R (bottom of Table 2).

Insert Table 2 here

For Experiment 1, to permit within-respondent statistical analysis, respondents saw each of the 59 option
pairs 20 times17, yielding 1180 experimental trials. These 1180 trials were mixed with another 832 pairs of
stimuli, some of which were designed to test other hypotheses while others served as distractors. The 2,012
pairs of stimuli were divided into blocks, each consisting of a series of five consecutive option pairs. Within
each block, we randomized the order of presentation across respondents. The order of the blocks was constant
across respondents. Each block contained two or three experimental pairs, but never from the same stimulus
set. We placed option pairs from the same set in alternating blocks, so respondents saw 5-13 other pairs between
experimental pairs from the same stimulus set. Respondents were shown 95-103 option pairs before experiencing
a repetition of the same pair.

It is natural to question whether making in excess of 1,000 decisions per session could bias a respondent’s
behavior and yield unrealistic data. We tested this concern empirical by running a second experiment with the
same stimuli, but with a small number of individual trials per person. Hence, for Experiment 2, where we did not
aim to carry out individual respondent statistical analyses, respondents saw each of the 59 option pairs exactly
once. They were also given another 47 distractor pairs. The method of sequencing the presentations of these
option pairs matched that of Experiment 1.

15This step was accidentally omitted by the person administering Experiment 2 at UIUC.
16The experimental software used was a custom-made program called Disc’n’Risk, developed by Uwe Czienskowski at MPI. The

Supplementary Materials give further experimental details.
17We repeated each option pair 20 times in order to accommodate a frequentist analysis. If we only ran the Bayesian analysis, we

could cut this by a factor of 3. For example, Davis-Stober et al. (2015) used 8 repetitions per option pair in a ternary choice experiment.
Some parametric models, such as logit and probit models work without repetitions of the same stimuli and, instead, use many different
stimuli for statistical convergence.
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6 Results of Experiment 1

We tested all eight model types of Section 3, as illustrated three-dimensionally in Figure 1. For noisy-P, noisy-I,
noisy-PI, noisy-PI-mix, noisy-LO, noisy-LO-mix, we furthermore used three different bounds τ on error rates:
τ = 0.5 (modal choice, which contains Fechnerian models, such as logit and probit specifications, as special
cases), τ = 0.25 (whose maximum error rate is considered adequate by some scholars, e.g., Harless and Camerer
1994), and τ = 0.1 (according to which errors are not a major component of the response process). All in
all, therefore, we tested 20 different transitive probabilistic models of intertemporal choice. All of our analyses
require order-constrained statistical inference, implemented in the public domain software QTest, programmed
for multiple computing platforms18 (Regenwetter et al., 2014).

6.1 Are transitive models viable?

We first assess the overall viability of each model for each respondent and stimulus set by computing the Bayesian
p-values (Gelman et al., 1996). The Bayesian p-value is a posterior predictive check of the descriptive adequacy
of each model. It is computationally inexpensive and relatively easy to interpret. Essentially, the Bayesian
p-value is computed by comparing the observed data to the posterior predictive distribution of the model. If
the observed data are consistent with the posterior predictive distribution, then the Bayesian p-value is high;
otherwise, it is low (see Myung et al., 2005, for details on computation). A standard approach is to declare an
adequate fit of a model to the data whenever the Bayesian p-value exceeds 0.05. The Bayesian p-value does not
indicate the probability that a model is correct. Bayesian p-values cannot be compared across models. We use
Bayesian p-values only to determine the proportion of respondents for whom each model provides at least an
adequate fit, and we leave model selection for later.

We computed the Bayesian p-value of each model separately for each respondent and stimulus set. Figure
2 shows, for each model and stimulus set, the proportion of respondents for whom that model provided an
adequate fit (frequentist fits are available in Figure S1 in the Supplementary Materials). Overall, there seem
to be several transitive models that provide adequate fits for most respondents and most stimulus sets. The
most complex model, in which all linear orders are permissible preference states and in which responses can
be maximally noisy, the noisy-LO-mix model with τ = 1

2 , provides an adequate fit for nearly every respondent
in every stimulus set. On the one hand, this means that transitive models can account almost universally for
our data across respondents and stimulus sets. On the other hand, the three instances of the noisy-LO-mix are
among the most statistically complex of the models we have tested, and the Bayesian p-value does not penalize
models for complexity.

In contrast, the noisy-I models at all noise bounds were inadequate for all but a few respondents in each
stimulus set, casting doubt on this model’s viability as an explanation of the data at any level of the error
bounds. However, since this model is especially parsimonious relative to the others, especially at the 0.1 noise
bound, it is possible that a noisy-I model could provide the best explanation for those respondents and stimulus
sets in which its Bayesian p-value exceeded 0.05.

The random-LO model fits a large proportion of respondents. When the �A and �t options are removed in
the random-LOT model, however, the fit drops dramatically. The large decrease in fit caused by the removal of
these preference states suggests that linear orders based exclusively on either amount or time played a key role
in the good performance of the random-LO model.

The noisy-P models seem to show the greatest interaction across stimulus sets, especially at the 0.25 and
0.1 noise bounds, as they are adequate for most respondents in Stimulus Sets 3, 4, and 5, but fewer than half
of the respondents in Sets 1, 2, and R&R. Similar patterns of interaction emerge for the noisy LO models,
noisy-PI models, and noisy-PI-mix models, especially those with lower error bounds τ . These results raise the
question whether respondents’ behavior may be best described by different models in different stimulus sets,
with an overall model across stimulus sets requiring some flexibility. To answer this question more conclusively,
we proceed to the model selection analysis.

Insert Figure 2 here

18The original (frequentist only) release of QTest is available at www.regenwetterlab.org. A new multicore compatible version with
Bayesian capabilities is available from the authors while it is being prepared for public release.
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6.2 Model selection results: Individual level analyses

Our next goal is to identify the best model at the individual level, before we proceed to the group level. Our
criterion for model selection is the Bayes factor (Kass and Raftery, 1995), defined as the ratio of the marginal
likelihoods of two models, derived from Bayesian updating. The Bayes factor accounts for both goodness-of-fit
and complexity/parsimony. It selects among models based on generalizability (Pitt and Myung, 2002), in that
the model with the highest Bayes factor is the one deemed to most accurately predict future data samples from
the same process that generated the currently observed sample (see, e.g., Liu and Aitkin, 2008).

To identify the best model at the individual level, we computed the Bayes factor of each model, relative to
the saturated model, separately for each respondent and stimulus set.19 With 20 models, 61 respondents, and
6 stimulus sets in our study, this analysis yielded a total of 7,320 respondent-level Bayes factors. Our Bayes
factors varied across many orders of magnitude (the Bayes factors for each model, respondent, and stimulus set
are available in a spreadsheet that is part of the Supplementary Materials). Many Bayes factors were quite large
and, hence, provided strong evidence in favor of the model in question. However, likewise, in many cases, the
evidence against a given model was quite strong: Of the nearly 3,000 Bayes factors that were smaller than 1.0,
nearly half (1,450) had log10 values between −10 and −200. Of these, 984 were for the noisy-I, 223 were for
the noisy-P, 131 were for the noisy-PI, 58 were for the noisy-PI-mix and 54 were for the noisy-LO. Table 3
summarizes the results by reporting key features of the best model for each respondent and stimulus set. The
features are identified using the labels introduced in Table 1. For example, the best model for Respondent 1
in Set 1 in the UIUC sample is noisy-PI-mix, which assumes probabilistic preferences and choices. So, the
corresponding cell is shaded to indicate probabilistic preferences and it shows the core theory {�A,�t} in plain
text (rather than bold) to indicate probabilistic choices. For simplicity, the table uses the same label for all models
with the same core theory, preferences, and response process, regardless of error bound (e.g., noisy-PI-mix with
τ = 0.5 and noisy-PI-mix with τ = 0.1).

Insert Table 3 here

Perhaps the most prominent aspect of Table 3 is the apparent heterogeneity across respondents and stimulus
sets. No single core theory, type of preference, or type of response process was robust across all respondents and
stimulus sets. In fact, not only was there heterogeneity in terms of the best model, there was also heterogeneity
in terms of which models were adequate. That is to say, no model had a Bayes factor greater than 1.0 for
every respondent and stimulus set, meaning that every model failed on at least one respondent and stimulus set,
relative to the saturated model (see the spreadsheet in the Supplementary Materials for the Bayes factor of each
model, respondent, and stimulus set). This does not mean all of the models failed overall, as there were only very
few cases (8 out of 366 respondent-by-stimulus combinations, indicated by the black shaded boxes in Table 3) in
which none of the 20 models had a Bayes factor greater than 1.0. Nevertheless, the 8 cases in which the saturated
model was favored represent instances in which transitivity (a core assumption shared by all 20 models under
consideration) may have been violated. In the current modeling framework, a violation of transitivity means
that the core theory of the best model includes one or more intransitive preferences. Interestingly, four of the
apparent violations involved just two respondents: UIUC Respondent 14 and MPI Respondent 22; and six of
them involved just one stimulus set: Set 2. This clustering of apparent violations within certain experimental
conditions and respondents is consistent with the findings of Cavagnaro and Davis-Stober (2014) and suggests
that the violations may represent robust individual differences.

Although no core theory was best across the board, �A most frequently performed best (264 of 366 entries
in Table 3), indicating that most respondents seem to prefer the option with the highest amount, regardless of
the time delay. This was especially the case in Stimulus Sets 4 and 5, in which all but eight respondents were
best described by a model assuming core theory �A. In contrast, fewer than two-thirds of respondents were best
described by �A in Stimulus Sets 1, 2, and R&R. Despite these variations across stimulus sets, we found that
about half (31 out of 61) respondents were best described by the same core in all six stimulus sets (these are
marked in Table 3 with respondent numbers enclosed in hyphens, e.g., -2-). This consistency suggests that the

19In general, Bayes factors of inequality constrained models cannot be obtained analytically. However, in this particular case, we were
able to obtain analytical solutions for the Bayes factors of noisy-P, noisy-I, noisy-PI, and noisy-LO, relative to the saturated model.
This is because the inequality constraints are orthogonal within each of these models, and the priors on each dimension are independent
and conjugate to the likelihood function. We obtained respondent-level Bayes factors for the remaining models, in which the order
constraints are not orthogonal, using Monte Carlo integration. To compute pooled Bayes factors, we used a specialized procedure
developed by Klugkist and Hoijtink (2007). In short, this algorithm yields the Bayes factor for an order-constrained model versus the
saturated model by drawing a large sample from the posterior distribution of the saturated model and computing the proportion of
the sample that satisfies the order constraints of the nested model (see Cavagnaro and Davis-Stober, 2014, for additional details).
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best core theory may be somewhat robust across stimulus sets, within some respondents.
Like any model selection analysis on experimental data, our analysis is specific to the models, participants,

and stimuli considered. The fact that �A accounts well for some stimulus sets but not others suggests that
it is worthwhile considering core theories that agree with �A on some stimulus sets but not others. In our
Roadmap section, we discuss how to evaluate a variety of core theories using the same general approach, and
with appropriate stimuli.

6.3 Model selection results: Group level analyses

To select among models at the group level, we use two measures: the group Bayes factor (GBF, Stephan et al.,
2007) and the pooled Bayes factor (PBF). Both select among models at the group level, but they differ in
the mechanism by which respondent-level results are aggregated: the PBF aggregates data across respondents,
whereas the GBF aggregates likelihoods across respondents. The PBF is the ratio of the marginal likelihoods
of two models given the pooled data from all respondents, whereas the GBF is the product of respondent-level
Bayes factors. Thus, the model with the highest PBF is the one that best accounts for the pooled data, while
the model with the highest GBF is the one that jointly best accounts for each respondent’s data.20

Table 4 ranks each model based on the GBF and PBF, respectively, in each stimulus set (the log10 transformed
GBF and PBF values are reported in Table S2). For pooled data, it only makes sense to evaluate models which,
if there is more than one core deterministic preference, can inherently accommodate heterogeneity of preferences.
Formally, these are models whose parameter spaces form convex sets, i.e., we must omit the noisy-PI model and
the noisy-LO model (such as weak stochastic transitivity).

The noisy-PI-mix model was by far the most successful, according to both the GBF and PBF, in almost all
stimulus sets. The exceptions were Set 2, in which noisy-LO was best according to GBF, and R&R, in which
noisy-LO and noisy-P were best according to the GBF and PBF, respectively. What is most notable about this
result, besides the near-unanimity across stimulus sets, is that noisy-PI-mix assumes probabilistic preferences,
whereas a vast majority of respondents were best described as having deterministic preferences. These results are
not contradictory, as they may seem at first, because probabilistic preferences at the group level need not imply
that every decision maker in the group has uncertain preferences. Rather, probabilistic preferences at the group
level implies that the sample comprises a heterogeneous mix of up to three types of decision makers: those with
deterministic preferences who respond in a noisy fashion, those who have uncertain preferences and respond in a
deterministic fashion, and those who have uncertain preferences and respond in a noisy fashion. The group-level
analyses cannot identify the nature of the heterogeneity more precisely because they do not distinguish between
variability within respondents (such as, preference uncertainty) and variability between respondents (such as,
individual differences in core preferences).

Insert Table 4 here

Despite the limitations of the group-level analyses, they are essential for obtaining results that generalize
beyond each particular decision maker. The current GBF results suggest that the model that will generalize
best to data from a randomly selected respondent is noisy-PI-mix. Although this model implies probabilistic
preferences �A and �t, we can see from the respondent-level results, in Table 3, that it is unlikely for a randomly
selected respondent to be best described by such a model (most are best described by models with deterministic
preference �A). However, since there are individual differences, the randomly selected respondent may be best
described as having deterministic preference �A, or deterministic preference �t, both of which are part of
�A ∨ �t. Thus, noisy-PI-mix is selected by the GBF because it is deemed to provide the most parsimonious
account that is consistent with the behavior of most respondents.

It also stands out that noisy-PI-mix does well in only four of the six stimulus sets, whereas noisy-LO does
well in Set 2 and R&R. In fact, the only models that beat the unconstrained model across all six stimulus sets
are noisy-LO with error rates of 0.25 and 0.5. This suggests that generalizing across multiple stimulus sets
requires more preference patterns than just �A and �t. This result highlights the importance of the choice of
stimulus sets when testing models of intertemporal choice. If one is only concerned with modeling choices on a
narrow set of stimuli, such as those in Sets 3-5, then a small set of preference patterns may suffice. However,
generalizing to a broader set of stimuli may require additional preference patterns, perhaps even intransitive
patterns. Identifying the minimal set of preference patterns that generalizes to any arbitrary stimulus sets is

20This interpretation of the GBF rests on two assumptions: that every respondent has the same model (i.e., the same set of restrictions
on choice probabilities, but not necessarily the same choice probabilities) and that the model evidences are independent. The latter
assumption is tenable for GBFs as long as respondents are sampled independently from the population.
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beyond the scope of this paper. Later, in the Roadmap section, we provide additional guidance on investigating
this issue.

The pooled Bayes factor results suggest a slightly different interpretation than the group Bayes factor results.
Since the PBF is based on pooled data, the model selected by the PBF is the one that is deemed to generalize best
to future pooled data. That is, it may not be representative of any particular respondent, but it parsimoniously
captures the aggregate choice proportions. This distinction between the PBF and the GBF helps to explain why
the noisy-P model fares well according to the PBF but not the GBF. The noisy-P model fares well according
to the PBF because, in the pooled data, any influence from the minority of respondents whose choices are not
consistent with noisy-P (i.e., those in Table 3 whose best core theory was not �A) is washed out by the vast
majority of respondents whose choices are best described by noisy-P. On the other hand, the GBF is not based
on pooled data, but rather aims to simultaneously describe each respondent’s choice proportions. Thus, the
noisy-P model does not fare well according to the GBF, because the noisy-P model provides such an extremely
poor account of the choice data from those respondents who were best described by other models (e.g., those in
Table 3 whose best core theory was �t).

7 Results of Experiment 2

Experiment 2 aimed to diagnose systematic changes in respondent behavior caused by the number of questions.
For instance, the large number of choices in Experiment 1 might have led decision makers to switch their decision-
making strategy from a compensatory strategy to a simple heuristic of attending only to either reward or time.
Thus, in Experiment 2, each respondent saw and made a choice on each option pair only once, not 20 times
as in Experiment 1. The drawback is that these data do not permit fine-grained individual level analyses. We
interpret the models as describing between-subject heterogeneity and we focus on pooled analyses. Like in the
pooled analysis of Experiment 1, it only makes sense to evaluate convex models (that inherently accommodate
heterogeneity of preferences wherever multiple core preferences are allowed).

Table 5 gives the model rankings in each stimulus set, according to the pooled Bayes factor, for Experiment 2
(the log transformed Bayes factor values are available in Table S3). Notably, the rankings in this table nearly
match those of Experiment 1 in the right panel of Table 4. In particular, the best model in each stimulus set
in Experiment 2, according to the PBF, is either noisy-P or noisy-PI-mix. These models fare well at nearly
all τ levels. None of the other models fares particularly well in any stimulus set or with any τ level, with the
exception of noisy-LO-mix in the R&R stimulus set.

Insert Table 5 here

To put these results into perspective, recall from Experiment 1 that we found heterogeneity between subjects
was best characterized by a mixture of two types of respondents: those attending only to time and those attending
only to reward amount (noisy-P and noisy-PI-mix were the best explanations of the pooled data). If this pattern
were merely a consequence of the large number of choices made by each respondent in Experiment 1 then we
would expect to see a different pattern in Experiment 2. Since model selection favors the same core in both
experiments, we see no reason to suspect a dramatic change. Note that this evidence is only suggestive and not a
formal implication, because the aggregate choice proportions do not uniquely identify the mixture components.
This is an inherent weakness of analyzing pooled data and the key reason why one can only draw conclusions
about individual behavior if one gathers sufficient data from the individual. For instance, choice proportions that
are consistent with noisy-PI-mix are also consistent with mixtures of other core theories besides just �A and
�t. It is possible for noisy-PI-mix to be the best model according to the GBF even when the data are generated
by some mixture of compensatory strategies. This problem is particularly vexing for models like noisy-PI-mix,
because vectors of choice proportions that are near one-half on every dimension can be generated by nearly
limitless combinations of deterministic components. However, in Experiment 2 we actually found that noisy-P
was the best model in four out of six stimulus sets, with τ = 0.1 in one case. The geometry of the parameter
space makes it implausible that aggregate data could favor noisy-P with τ = 0.1 unless the vast majority of
individual respondents actually chose according to that model.

8 Roadmap

This paper has been about the interplay between heterogeneity and parsimony in modeling intertemporal pref-
erences. In order to highlight how this issue affects model selection, we have focused specifically on transitive
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intertemporal preference. Furthermore, instead of considering the menagerie of specific, parametric, transitive
theories, we have considered a handful of more general, parameter-free models that are characterized by subsets
of viable linear ordered preferences. In particular, we have considered the ‘extreme’ cases where either just one
or two, or all linear orders were considered viable. However, for a given set of stimuli, a parametric theory of the
form u(x) = v(A)�Ψ(t) typically falls between these two extremes by predicting potentially many, but not all,
linear orders as permissible preferences. Other types of theories furthermore predict preferences other than linear
orders, such as intransitive preferences. Next, we briefly discuss a roadmap for studying competing theories in
a way that formally accounts for heterogeneity. Future analyses of discounting models and intransitive models
alike can emulate our approach of modeling either the core preferences, or the responses, or both, as probabilistic
processes. Future work can also leverage order-constrained inference methods for statistical inferences and model
selection to tackle the complex trade-off between parsimony and heterogeneity. Without much loss of generality
and for ease of exposition for rest of this section, we concentrate on the scenario in which two or more theories
of the form u(x) = v(A)�Ψ(t) compete against each other.

8.1 Stimulus design

Our Stimulus Sets 1-5 are ‘standard’ intransitivity stimuli in which two attributes trade-off against each other
in equal steps as we move through the list of stimuli (similar to the lotteries of Tversky, 1969, in risky choice).
Stimulus Set R&R was based on a prior paper on intransitivity of intertemporal preference. If, instead of
transitivity, one were rather interested in specific theories of the form u(x) = v(A)�Ψ(t), then stimulus design
could leverage the specifics of those theories to create choice options that are diagnostic among the theories
under consideration. To distinguish these theories, one should use stimuli for which different theories predict
minimally overlapping sets of preference patterns. In addition, if the primary goal is to test competing theories
(i.e., to either validate or falsify each theory in its own right), one should design the stimuli in such a way that
each theory under consideration would also permit as few distinct preference patterns as possible so as to create
maximally parsimonious predictions. On the other hand, if the goal is to estimate and identify parameters, say,
discount rates, with maximal precision, then one should design stimuli that are maximally diagnostic in that
regard, namely, stimuli that lead to many different preference patterns as one varies the discount rate of each
theory. In so doing, one ensures that each preference pattern is consistent with only a small range of parameter
values of the core theory, say, a narrow range of discount rates. In addition, stimulus design also depends on the
type of heterogeneity one wants to either accommodate or critically test.

8.2 Heterogeneity

The type of heterogeneity one wants to account for has strong implications for the type of probabilistic model and
level of data aggregation that are suitable. For example, if each individual decision maker satisfies a logit model,
but there are individual differences in the parameters of this logit model, then the population generally does not
satisfy a logit model because the average of logit probabilities need not be logit probabilities. More generally,
if each individual has a core deterministic preference or utility function and only responses are probabilistic,
it usually does not make sense to model the population with a single deterministic core preference or utility
function, unless it makes sense to treat preferences or utilities as unanimous.

If one were to compare, say, exponential and hyperbolic discounting, it would be advisable to consider multiple
different specifications. The first step would be to identify, for the given stimulus set, the set of linear orders
that are consistent with exponential and hyperbolic discounting by varying their free parameters. Then, one
could consider probabilistic models of the following types.

1. Like our noisy-P, noisy-I, noisy-PI and noisy-LO models, it would make sense to consider models with
deterministic core preferences that are defined by precisely those linear orders that are consistent with the
discounting model at hand, and responses are modeled probabilistically. In addition to the distribution-
free error specifications we used, many models of the form u(x) = v(A) � Ψ(t), including discounting
models, interface naturally with Fechnerian specifications, such as logit and probit models. It is important
to reiterate that many of these specifications can be hard to interpret as models of individual behavior if
applied exclusively to data pooled across individuals, unless one is willing to assume that those individuals
are unanimous in their underlying preferences or utilities.

2. Like our random-LO and random-LOT models, it would make sense to consider random preference models
that permit a probability distribution over precisely those preference states that are permitted by a given
core theory. Because these models feature convex parameters spaces, they can model both within and
between person heterogeneity. Interesting parametric special cases to consider, say for exponential and
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hyperbolic discounting, are random preference models constructed via a parametric distribution over the
permissible discount rates in each core theory.

3. Last but not least, like our noisy-PI-mix and noisy-LO-mix models, it is worth considering hybrid mod-
els that permit heterogeneity in the preference states consistent with each given core theory, as well as
probabilistic error in responses.

8.3 Model selection criteria

In our analysis, we have emphasized the interplay of heterogeneity and parsimony. In addition to multiple
different criteria for goodness-of-fit, we have leveraged the Bayes factor as a model selection tool that is well-
suited to quantify parsimony of probabilistic models and to select among models that, like ours, are neither
disjoint nor nested. The same methods are useful also for model competitions more generally, including among
models based on a core representation of the form u(x) = v(A) � Ψ(t). For parametrized theories like that,
there are many additional tools available for model selection. For example, some probabilistic models, especially
Fechnerian models, naturally plug into adaptive design optimization methods (Cavagnaro et al., 2013) at the
individual level. Furthermore, when using models to estimate core parameters, such as an individual’s discount
rate, it is natural to test the validity of parameter estimates through prediction to new data sets on different
stimuli (e.g., the generalization criterion of Busemeyer and Wang, 2000).

8.4 Sketch of a model selection study

We briefly sketch how our roadmap would help design a study aimed at diagnostic design that facilitates replica-
tion studies while balancing heterogeneity with parsimony. Table 6 sketches an example of a model competition
between exponential and hyperbolic discounting. Imagine that a lab plans a study consisting of a three-stage
competition between these two core theories. In Stage I, the lab proposes a set of stimuli that balances two
types of diagnosticity: 1) By permitting only few different preference patterns under either theory, it places
empirical pressure on both theories. 2) By predicting rather different collections of preference patterns from
the two theories, it helps distinguish exponential from hyperbolic discounting. The lab includes several different
nonparametric probabilistic models that broadly model probabilistic preferences, or probabilistic responses, or
both. The lab also plans frequentist and Bayesian analyses on several different levels, including individual level
and group level analyses. In Stage II, the study focuses on the ‘best performing’ core theory from Stage I to
attempt to estimate and identify discount rates. The stimuli for this stage are designed to be maximally diag-
nostic for that core theory by permitting a broad array of preference patterns as a function of the discount rate.
The probabilistic specifications now also include a variety of parametric special cases of the specifications in
Stage II. Parametric Fechnerian and random preference models lend additional structure that can help identify
discount rates more precisely than the earlier nonparametric models. Depending on the source of heterogeneity,
the goal is to obtain either a ‘best’ single discount rate from each individual or a parametric distribution of each
individual’s discount rates, or to estimate a population level distribution over discount rates through a variety
of probabilistic models and statistical procedures. A major component of Stage II is to evaluate whether and
how the ‘best’ discount rate (point estimate or estimated distribution) varies with the assumed source and the
model of heterogeneity. Finally, Stage III is a generalizability study that critically tests the ‘best’ core theory,
‘best’ probabilistic specification, and ‘best’ parameters from Stages I and II on additional stimuli. These stimuli
are dependent on the results of Stages I and II and are designed to place maximal pressure on the hypothesized
theory, model of heterogeneity, and parameters from Stages I and II. The quantitative performance in all three
stages can be evaluated with similar methods.

Insert Table 6 here

9 Conclusions

Heterogeneity causes great challenges in measuring and predicting individual preferences and choices. A common
way to think of heterogeneity is that different decision makers might differ in their parameter values (such as their
discount rates) within a shared theoretical account (such as exponential discounting) or that a given decision
maker might differ in her parameter values for different types of stimuli. Another common way of tackling
heterogeneity is to relax restrictions on the functional form of a given theory without changing the probabilistic
specification or the response mechanism. Rather than spelling out a refined theory of choice behavior, such
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approaches pursue increasingly complicated theories of hypothetical constructs. The common practice of inferring
parameter values (e.g. discount rates) of a ‘prototypical’ decision maker from pooled binary choice data of
heterogeneous decision makers is rarely grounded in an explicit and compelling model of heterogeneity.

A common way to think of parsimony of a theory is to count the number of parameters in the deterministic
core of a theory (and to ear-mark one or more additional parameters for noise or for heterogeneity of parameter
values). Counting parameters is only a coarse heuristic in characterizing how flexible or inflexible a theory is
in accounting for potential empirical data. As a case in point, on our Set 5, hyperbolic discounting with one
free parameter in the algebraic core permits just one preference state, namely �A, regardless of the discount
parameter. On the other hand, for exponential discounting, which also has one free parameter in the algebraic
core, we have found 11 different linear orders, depending on the discount rate. Hence, if we are interested
in testing theories empirically, we must keep a close eye on the interplay between the functional form, the
probabilistic specification, as well as the stimuli we use in a given study, to account for parsimony in a suitable
fashion when analyzing our data. A more rigorous account of model complexity, rather than counting parameters
of an algebraic functional form, is to spell out the sources of heterogeneity mathematically and to quantify the
flexibility with which the resulting probabilistic model accommodates possible data as a function of the stimuli
used.

Here, we aimed to abstract away from distributional assumptions and parametric accounts of heterogeneity
and parsimony in intertemporal choice. We focused instead on general characterizations of two crucially impor-
tant sources of heterogeneity in choices on a given stimulus: the latent intertemporal preferences and the response
process. In particular, we considered that the latent preferences may be probabilistic or the responses (based on
a given preference) may be probabilistic, or both processes may be probabilistic. While these types of processes
have a long history of scientific study, they have been largely neglected in intertemporal choice research. Even
though our models differ strongly in their parsimony, every one can be characterized by 10 order-constrained
binomial parameters. We have taken a Bayesian approach to quantifying model complexity.

We found that the core preferences �A and �t appeared to drive the performance of the winning models in
most cases, suggesting that models draw most of their strength from being able to predict simple patterns of
behavior, such as always prefering the highest reward or always prefering the shortest time. However, developing
a robust model of intertemporal choice requires attention to a number of issues besides just the core preferences
permitted by the underlying theory. Our various levels and types of analyses have shown that both model
performance and model selection are sensitive also to the chosen stimulus set, the assumed response process, and
whether we analyze data within each individual, jointly across many individuals (GBF), or pooled from many
individuals (PBF). We did not find evidence for systematic differences between the U.S and the German study.
Also, even though respondents in Experiment 1 each had to handle 20 times as many questions as respondents
in Experiment 2, we did not find evidence for systematic differences between the two experiments.
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(a) noisy-P (b) noisy-I (c) noisy-PI

(d) noisy-LO (e) random-LO (f) random-LOT

(g) noisy-PI-mix (h) noisy-LO-mix (i) saturated

Figure 1: Eight types of probabilistic choice models for linear order intertemporal preferences and the saturated
model. The coordinates are the choice probabilities PLM , PLS , PMS . The shaded regions are the permissible choice
probabilities for each model. The figure shows the case when τ = 0.25 in (a)-(d); (g)-(h). Considering different
upper bounds on error rates yields additional models in these cases.
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Figure 2: Bayesian p-values in Experiment 1. Each panel shows the results for one model, with the level of τ
indicated in the header after the model name (where applicable). Each panel reports the proportion of respondents
(out of 61) with adequate fits (Bayesian p-value > 0.05), on the vertical axis, separately for the six stimulus sets.
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Table 1: Summary and notational convention for the models under consideration.

Name Fig. 1 Core Theory Preferences Response Process Label

noisy-P (a) {�A} Deterministic Probabilistic �A

noisy-I (b) {�t} Deterministic Probabilistic �t

noisy-PI (c) {�A, �t} Deterministic Probabilistic �A ∨ �t

noisy-LO (d) LO Deterministic Probabilistic LO
random-LO (e) LO Probabilistic Deterministic LO

random-LOT (f) LO \ {�A, �t} Probabilistic Deterministic LOT
noisy-PI-mix (g) {�A, �t} Probabilistic Probabilistic �A ∨ �t

noisy-LO-mix (h) LO Probabilistic Probabilistic LO
saturated (i) B – – B
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Table 2: Six stimulus sets. In Sets 1-5, we considered all 10 possible distinct S vs. L pairs among the five listed
options. In R&R, we considered the nine listed S vs. L pairs.

Set 1 options Set 2 options Set 3 options Set 4 options Set 5 options

Money Days Money Days Money Days Money Days Money Days
3 4 1 1 14 23 1 1 9 80
5 28 5 21 15 27 3 4 11 83
7 52 9 41 16 31 5 7 13 86
9 76 13 61 17 35 7 10 15 89

11 100 17 81 18 39 9 13 17 92

R&R pairs

S versus L
Money Days vs. Money Days

7 7 vs. 8 14
7 7 vs. 10 49
8 14 vs. 10 49

10 16 vs. 12 18
10 16 vs. 15 25
12 18 vs. 15 25
4 13 vs. 5 16
4 13 vs. 11 22
5 16 vs. 11 22
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Table 5: Experiment 2: Ranking of each model from best (highest PBF) to worst (lowest PBF) in each stimulus
set. Rankings in parentheses are worse than the saturated model in the same stimulus set. Ties are given identical
ranks. For ease of reading, the three best models, 1, 2, and 3, are marked in boldfaced font.

Model τ Set 1 Set 2 Set 3 Set 4 Set 5 R&R

noisy-P 0.10 (13) (12) (12) 1 1 (12)
noisy-P 0.25 (11) 4 3 3 3 (10)
noisy-P 0.50 6 1 4 5 5 1
noisy-I 0.10 (15) (15) (15) (15) (15) (15)
noisy-I 0.25 (14) (14) (14) (14) (14) (14)
noisy-I 0.50 (12) (13) (13) (13) (13) (13)
noisy-PI 0.10 - - - - - -
noisy-PI 0.25 - - - - - -
noisy-PI 0.50 - - - - - -
noisy-LO 0.10 - - - - - -
noisy-LO 0.25 - - - - - -
noisy-LO 0.50 - - - - - -
random-LO 5 7 6 8 (8) 5
random-LOT 4 (11) 8 (12) (12) (8)
noisy-PI-mix 0.10 2 5 1 2 2 (11)
noisy-PI-mix 0.25 1 2 2 4 4 (9)
noisy-PI-mix 0.50 3 3 5 6 6 2
noisy-LO-mix 0.10 7 6 7 7 (11) 3
noisy-LO-mix 0.25 8 8 9 (10) (10) 4
noisy-LO-mix 0.50 9 9 10 (11) (9) (7)
saturated 10 10 11 9 7 6
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Table 6: Sketch of an example model competition between exponential and hyperbolic discounting. A study like
this can be pre-registered. It specifies how theories compete, what sources of heterogeneity are permissible, and
how they are modeled.

Stage I: Theory testing and screening
Algebraic Core: Exponential versus Hyperbolic Discounting
Stimuli: Permit few preference patterns overall

Preference patterns diagnostic between these theories
Determ. Pref. & Prob. Resp. Supermajority specification with three different error bounds
Prob. Pref. & Determ. Resp. Random preference over permissible preference states
Prob. Pref. & Prob. Resp. Hybrid model (convex hull of the previous two)

Stage II: Identifying discount rates for best theory from Stage I
Algebraic Core: Best theory from Stage I
Stimuli: Permit many preference patterns
Fixed discount rate & Prob. Resp. Supermajority specification with three different error bounds

Logit, probit, Luce, and other Fechnerian models
Prob. discount rate & Determ. Resp. Parametric random preference over permissible preference states

induced by a normal distribution over discount rates
Prob. discount rate & Prob. Resp. Hybrid models

Stage III: Generalizability to new stimuli
Algebraic Core: Same as Stage II
Stimuli: Permit few patterns based on parameter estimates of Stage II
Model of Heterogeneity: Best from Stage II

Types of analyses in each stage
Within subject frequentist p, Bayes p, Bayes factor
Pooled frequentist p, Bayes p, Bayes factor
Other Group Bayes factor, Hierarchical Bayes models
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