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Abstract This investigation presents a simple spatially
explicit analysis of the ideal-free distribution. The tradi-
tional ideal-free distribution assumes discrete sites with
definite boundaries, and predicts how many individuals
should occupy each site. In contrast, the present analysis
assumes that a forager’s gains gradually decline with dis-
tance from a site, and asks where in space individuals
ought to be. Although many interesting situations may
arise, the analysis asks how individuals should position
themselves as the distance between two identical sources
increases. Nash equilibrium positions should follow a
pitchfork pattern as the distance between sites is in-
creased; that is, an individual should maintain a position
between two sources when they are close together but
should move nearer one of the sources when they are far
apart. In addition, the text describes an experimental
study that parallels the theoretical analysis. The experi-
ment supports the predicted pitchfork pattern, and pro-
vides somewhat weaker support for the predicted differ-
encesin “individual” and “paired” pitchforks.

Keywords ldeal-free distribution - Spatial models -
Foraging - Starling

Introduction

The ideal-free distribution, or IFD (Fretwell and Lucas
1970; Fretwell 1972), is a mainstay of the theoretical
repertoire of behaviora ecology: it deals with the eco-
logically and behaviorally important problem of the spa-
tial distribution of foraging animals. Its simplicity makes
it a frequent starting point for new theoretical develop-
ments. Theoreticians have extended and modified the

Communicated by A. Kacelnik

D.W. Stephens ([ ]) - J.R. Stevens

Department of Ecology, Evolution and Behavior,
University of Minnesota, St. Paul, MN 55108, USA
e-mail: dws@forager.cbs.umn.edu

Tel.: +1-612-6255722, Fax: +1-612-6246777

IFD in several ways: (1) allowing unequal competitors
(e.g., Rosenzweig 1986; Korona 1989; Sutherland and
Parker 1992); (2) incorporating resource dynamics (e.g.,
Schwinning and Rosenzweig 1990; Lessells 1995), and
(3) incorporating assessment rules and perceptual con-
straints (e.g., Abrahams 1986; Bernstein et al. 1988).
Moreover, the IFD lends itself to experimental and em-
pirical study, Tregenza's (1995) review lists 48 empirical
studies from 1970 to 1995. Although some disagree
about the empirical success of the model (Parker and
Sutherland 1986; Kacelnik et a. 1992; Kennedy and
Gray 1993; Milinski 1994; Tregenza 1995), many ob-
servers are struck with how well the IFD agrees with the
data given its simple (and seldom realized) assumptions.

This paper attempts to place the IFD in an explicitly
spatial context. The reader may find this a curious goal,
since the IFD is unquestionably a spatial model. Howev-
er, the IFD is not really a model of the distribution of an-
imals in space; it is, instead, a model of the distribution
of animals among patches or sites. The spatial entitiesin
the IFD are a set of well-defined, distinct sites, and the
IFD provides no a priori guidance about how these sites
should be identified. Most of us would agree that proper-
ties of resources (e.g., renewal rate, map position, initial
density) and properties of foragers (consumption rates,
movement speed, perceptual limitations) will be part of
any biological definition of sites. A spatially explicit IFD
might formalize this definition. In addition, the IFD as-
sumes distinct hard-edged sites, even though natural re-
sources are often more like smoothly changing resource
gradients. Again, this is an issue that a spatially explicit
IFD might address.

The elementary IFD: an implicit spatial model

Consider two possible feeding sites, numbered 1 and 2.
In the conventional IFD, we imagine a non-breeding
population of mobile animals of size N, where n, is the
number of individuals at site 1 and n, is the number of
individuals at site 2 (n,+n,=N). We characterize each



site by a rate of food arrival, r; and r,, and we suppose
that the n, individuals in site i compete as coequal ex-

ploiters so that each obtains food at rate T We seek an
(ny, ny) pair such that no individual can benefit from
moving to the alternative site. These assumptions sug-
gest an arrangement of individuals such that

h.oR 1
= M
because if an individual leaves site 1 for site 2, it will
necessarily do worse
hoh, D
oM, Tl @
Notice that this simplest model relies on exploitation
competition: at each site, individuals compete in a

scramble to obtain food; the more individuals present,
the lower the gains per individual.

The model

This simple model says virtually nothing about what a
siteis. To be concrete, imagine that sites are point sourc-
es that we can locate at specific map positions. Does the
spatia relationship between the two sites matter? Cer-
tainly it does. Sites separated by millimeters present a
different spatial problem than sites separated by kilome-
ters. We present an IFD model than accounts for the ef-
fects of distance by assuming that a forager’s gains grad-
ually decrease as its distance from a site increases. The
next section gives a verbal and graphical development of
our model. The Appendix presents a detailed algebraic
development.

The one-player, optimization model

To begin, consider a single forager exploiting a single
point source. The source is at position s and delivers
food at constant rate r (i.e.,, we consider the so-called
“continuous input” case). The forager is at position x.
How does the forager’s position affect its benefits? If we
follow the traditional 1FD, we might require that the for-
ager position itself at the source position (x=s) to obtain
any food. However, this seems too extreme: a forager
close to but not precisely at s may do quite well. To say
how well, we must consider the variance in delivery po-
sitions about the source and the forager’s ability to reach
food at a distance. We assume that food delivery posi-
tions follow a normal distribution, with mean s and vari-
ance o2 (Fig. 1); and, that a second Gaussian function
describes the forager’s ability to reach food delivered at
adistance. This reach function peaks at the forager’s po-
sition x, and tapers off according to width parameter h2
that is analogous to the variance of a normal distribution
(Fig. 1A). Although o2 and h? describe the properties of
mathematically different types of functions, we may rea-
sonably refer to both as width parameters.
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Forager Position, x

Fig. 1 A A distribution function centered at s with width parame-
ter 02, and reach function centered at x with width parameter h2.
B The exploitation function [G(x,s)] that results from combining
the distribution and reach functions as a function of s; centered at
x with width parameter vV g2+h2. C The same exploitation function
as afunction of x; now centered at s with width parameter v g2+h?

We choose Gaussian functions for several reasons. A
Gaussian distribution function is a natural extension of the
discrete sites of the IFD: a Site is centered at a given mean
position with a variance component that gives it fuzzy
edges. In addition, this models natural situations where
food, released from a central place (e.g., seeds from a
flower head, insect larvae from an egg mass), moves by
diffusion upon release. Our idea that another Gaussian
function describes the forager’s ability to reach food at a
distance is a plausible first conjecture. Ultimately, we will
need empirical guidance to validate or refine thisidea.

We want to know how the forager’s position (x) rela
tive to the source position (s) affects the benefits it ob-
tains [say G(x,9)]. Formally, we can find this function by
integrating the product of the distribution and reach
functions (see Appendix). Figure 1B, C shows that we
can think of the resulting function in two ways. If we
hold the forager’s position (x) constant and vary the
source position (s), then we expect a Gaussian function
centered at x (Fig. 1B). If, instead, we hold the source
position constant and vary the forager’s position, we ex-
pect the same Gaussian curve, but now centered at s
(Fig. 1C). We call this function [G(x,s)] the exploitation
function, because it shows how the properties of forager
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Fig. 2 Shownin A and B are A

two narrow distribution func- :
tions as solid curves. These dis-

tribution functions are centered

at —sand s. They also show a

Gaussian reach function for a

forager positioned in the center

(x=0). C and D show the corre-

sponding exploitation functions

(C correspondsto A and D to

B). The heavy curvesin C and s X s

D show the sum of the individ-
ual exploitation curves. In A
and D, the sources are close to-
gether, and aforager positionin
the center can exploit both;

so the total benefit curvein

C peaksin the center. In B and
D, the sources are further apart,
so aforager positioned in the
center exploits both poorly;
thus the total benefit curvein
D has aminimum in the center
and two coequal maxima near
the source positions

and source combine to determine the consegquences of
exploitation at distance. Although it is Gaussian in form,
the exploitation function is broader than both the distri-
bution and reach functions, having width parameter
Vv o2+h2. This will be a centra parameter in our model,
and we call it the exploitation width.

Two sources

Consider a forager who must choose a position when
there are two equivalent sources. The forager faces a
trade-off: it can choose a position near one source that
maximizes the benefit it extracts from this close source,
or it can choose a central position that attempts to use
both sources. We expect intuitively that a central position
will be best when the two sources are very close together,
and that a non-central position that focuses on one source
will be best when the sources are widely separated.

Notation

We place these two equivalent sources at positions —s
and s. That is, we choose a coordinate system that fixes 0
half way between the two sources. This means that 2sis
the distance between the two sources, and we cal it the
source separation. The parameter s, which we call the
source position, completely determines the source sepa-
ration (2s), and so we may use whichever is most conve-
nient for a particular analysis.

We use the exploitation functions described earlier to
evaluate the two-source problem. We suppose that the
combined benefits from the two sources are the sum

G(x,—s) + G(x,9).

Figure 2 shows how we can use this sum-of-benefits
formulation to understand the two-source problem.
Figure 2A shows two distribution functions as solid
curves and a dashed reach function for a forager near
the center. Figure 2C shows the exploitation functions
[G(x,—s) and G(x,9)] that correspond to each source, and,
as a heavy line, the total benefits [G(x,—s)+G(x,S)]. In
this case, we predict that the forager should adopt a cen-
tral position because the total benefit curve is maximized
at x=0. Figure 2B, D shows a situation in which the two
sources have been moved farther apart. When the sourc-
es are widely separated, the central position is a mini-
mum rather than a maximum. This reflects the fact that a
central position leaves the forager too far from both
sources to extract much benefit from either. When we
sum two widely separated exploitation functions we find
a pronounced dip in the middle and two coequal maxima
near +s.

This graphical analysis confirms our intuition that the
best position is in the middle exploiting both sources
when the sources are close together, but near one of the
sources when the sources are widely separated. Where
does this bifurcation occur? The Appendix shows that
foragers should adopt a central position when

s<o? ¥
and a non-central strategy otherwise. The reader will re-
cal that Vo2 +h? is the exploitation width; in words,
then, the bifurcation point occurs when the source posi-
tion equals the exploitation width (cf. Fig. 3A, B). Gen-
erally speaking, foragers should be more likely to adopt
acentral position when the exploitation width is large.
Although it is difficult to find an analytical expression
for the optimal positions, the Appendix derives a com-
plete, qualitative characterization of the optima, showing
that the optimal positions sweep out a pitchfork-shaped




Fig. 3A—F Plots of theoretical
predictions for various condi-
tions and parameter values. The
solid lines show predicted posi-
tions, the dashed lines show the
source positions for compari-
son
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pattern as source position (s) increases (Fig. 3A, B). For
small source separations, the best position is a central
one; as source separation increases, there is a qualitative
change to two non-central optima. At large source sepa-
rations, these non-central optima track the source posi-
tions (xs) closely (as one expects).

Even though we cannot find an analytical expression
for the optima, we have found a satisfactory approxima-
tion (see Appendix for justification):

D s<when~o? +h?
= E—tstanh 5\3(025—;12)5 otherwise

We used this approximation to plot Fig. 3A, B, and to
derive predictions for our experiment.

Source Position, s Source Position, s

NE-x models: the two-player game

In this section, we consider a game with two competitors
where we solve for the Nash equilibrium (NE) positions
() of two players: hence the name NE-x models. To de-
velop a spatia game, we must know how the presence of
a competitor changes the optimality model outlined
above. If we have two foragers, one at x, and another at
X, their reach functions tell us how effectively they ex-
ploit food at y. It follows that these reach functions
should specify the intensity of exploitation competition
at y. The Appendix shows how we can combine the
reach functions of two foragers [say T,(y,x,;) for focal in-
dividual 1, and Ti,(y,x,) for competing individua 2] into
a new effective reach function that incorporates informa-
tion about the forager's reach and about the effects
of competition implied by the competitor’'s reach. The
Appendix justifies the use of
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Fig. 4A, B Two plots of Eq.
A13. This shows how forager
1'srelative gains vary with po-
sitiony in two cases. In the top
panel, forager 1 isto the left of
forager 2 (x;<x,); so on the far
left, forager 1 obtains 100% of
the gains it would obtain alone,
while on the far right it obtains
virtually nothing. In the bottom
panel, forager 1 ison the right
(x:>%,) and we have the mirror
image situation with high rela-
tive gains on the right, and low
relative gains on the left

Relative Gains

A. Focal forager on the left, x1 < x»
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B. Focal forager on the right, x; < x;

Relative Gains

771(y(- %) )
T5,(Y, X
3]

as a suitable, but approximate, effective reach function.
This formulation agrees with the traditional IFD in
two important special cases. If at a given position, both
foragers have the same capture probability [To,(y,X,)=
T,(Y.%1)], then the forager’s “normal” probability of cap-
ture is halved &(y, %, X,) = _711(); %)
ers are present at the same site in the traditional IFD. If,
on the other hand, the competitor is very far from posi-
tiony, then its probability of capture will be close to zero
and the focal forager’'s reach function is unchanged
[E(Y,X1,%)=Tr (Y, X;)], as when a single forager finds itself
alonein the traditional IFD. The term

1
T (y1 XZ)
1+ 23172/
(Y, %)
represents the effects of competition, since we multiply

the reach function by this factor to obtain the effective
reach function. This term varies between 0, meaning the

E(yi Xl’ XZ) =

, as when two forag-

N o
0.8 /
0.6 /
0.4 /

0.2 2/

(x1+x2)/2

competitor dominates at a position y, and 1, meaning that
there is no effective competition at y. This competition
factor therefore expresses the forager’s gains relative to
what it could obtain if alone. Figure 4 shows the behav-
ior of this competition factor for Gaussian reach func-
tions (Eg. A13). The intensity of competition depends on
the difference x,—x, and the mean position of the forag-

+ . . . .
ers, 21 5 %2 In most situations, the competition factor is

a sigmoid function of position y. When our focal forager
isto the left (Fig. 4A) of the competitor (X;<X,), then the
focal forager’s relative gains are near one on the left and
near zero on the right, and equal to one-half at the inflec-
tion point precisely between the foragers %/: Xl;XZE
When the focal forager is on the right (Fig. 4B), we have
the mirror image situation in which competitive ability
increases as y moves to the right. In the special case in
which both foragers occupy the same position, the sig-

moid degeneratesinto aflat line at 5
The next step isto calculate the total benefitsto anin-

dividual at x; with a competitor at x,. Here, we follow
the logic of the optimization model except that we use




the effective reach function in place of the ordinary
reach function. The Appendix documents the details of
these calculations. To find an analytically tractable bene-
fit function, we restrict ourselves to the “point source’
case in which g2<h? (i.e., the variance about each source
is less than the forager’s reach). With an expression for
total benefit in hand, we calculate NE positions for a pair
of foragers. While these calculations are tedious (see Ap-
pendix), we can characterize the results easily (Fig. 3).
The NE-x positions are qualitatively similar to the opti-
mal x positions in that both cases show a pitchfork pat-
tern with increasing source separation s.

However, there are severa important differences.
First, in the optimization model, the upper and lower
tines of the pitchfork are coequal optima and the forager
should be indifferent between them. In the two-player
game, we expect a definite pattern, with one forager on
the upper branch and another on the lower branch. Sec-
ond, the handle of the pitchfork represents a pair of NE
in the center (x;,=x,=0). In Fig. 3C—F, the pitchfork has a
short central tine; this shows situations where there are
two NE, one in the center (x;=x,=0), and a different pair
of non-central values (x;=—x,20). Finally, in the optimi-

zation model, the exploitation width (\f"az +h2) com-
pletely determines the optima, so any combination of o2

and h2 such that k=+02+h? gives the same result.
Thisis not true in the two-player game. Although the ex-
ploitation width is still a key variable, the relative mag-

nitudes of 2 and h?2 (specifically the term 0—2) are also
important. As the quotient < h2 increases, the bifurca-

tion point decreases (compare Fig. 3C, E with Fig. 3D,
F). A comparison of the one-player (Fig. 3A, B) and two-
player (Fig. 3C-F) plots shows that paired foragers
should adopt non-central positions at smaller source sep-
arations.

As in the one-player case, we specify the solutions
approximately (see Appendix). When

s< (a e )(4 4h2)then(x1,x2) (0,0)
isaNash Equilibrium. When
s>\‘;‘€(a2 +h2)(g %ﬂz)th
(%4, %p) = D+stanh o (02542_ h2 g 25ﬂ22 ) 1
Fstanh %/6( 0'25-12- F2 g %ﬂ: ) [ ©)

is a Nash Equilibrium. The Appendix compares this ap-
proximation to numerically calculated exact solutions.

Model summary

Imagine an experiment in which one or two foragers
must choose positions aong the line connecting two
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point sources. The experimenter systematically varies
the distance between the two sources. Our models
predict that the relationship between source position
and forager position should follow a pitchfork pattern
(Fig. 3). In each of these plotsthereisacritical svalue at
which non-central solutions first arise (i.e., the bifurca-
tion point). The following list summarizes our results in
terms of this bifurcation point: (1) the bifurcation point

increases with the exploitation width (VUZ + h2) in both

the one- and two-player cases; (2) the bifurcation point is
smaller in the two-player case, so paired foragers should
begin to specialize on one of the sources at smaller sepa-
rations; (3) in the two-player game, the bifurcation point
decreases with 02 and increases with h2.

Methods

We engineered a system in which foragers position themselves
along aline, and where we could systematically vary the positions
of two point sources. We used this system to perform the experi-
ment described in the previous paragraph

The subjects were eight wild-caught adult European starlings
(Sturnus vulgaris), assigned to four pairs (one male/male, one fe-
male/female, and two mixed-sex pairs). We conducted the experi-
ments in a 2.7x2.7x2.7 m room illuminated by standard fluores-
cent lighting and equipped with a white-noise generator to mask
extraneous noise. The birds learned to feed from a pair of pellet
dispensers mounted on an inclined plane. Collectively we call this
the “roof” apparatus (Fig. 5). During feeding sessions, each dis-
penser delivered, on average, one pellet every 8 s. These delivery
schedules were statistically independent. The starlings typically
perched on the lip formed at the base of the roof and intercepted
pellets as they rolled down the roof. Any pellets that reached the
base of the roof fell into a chamber where the birds could not
reach them. The idea was to make the bird's “position” along the
lip of the roof the key variable in its foraging success, and to
prevent a behavioral pattern of hopping back and forth to collect
accumulated food.

Treatments

The two pellet feeders represent the two “point sources’ in our
models, and our dependent variables are the starling’s x positions
along the lip of the roof. We restrict our attention to the starling’s
position along the lip, where the starlings spent most of their time
(linoleum covered the surface of the roof and starlings seemed
reluctant to land on this slippery surface). The four pairs were
studied in sequence with each pair experiencing 21 treatments in
random order. The 21 treatments were factorial combinations of
seven source separation treatments (0, 10, 20, 30, 40, 50, and
60 cm), and three grouping treatments (paired, bird A aone, bird
B aone). The experiment ran as a closed economy with birds
living in the experimental room 23 h/day (a daily 1-h break for
cleaning, weighing, and equipment maintenance). The apparatus
delivered food in two 45-min sessions each day: one session from
1015 to 1100 hours and another from 1515 to 1600 hours. We ad-
justed feeder positions and grouping condition according to a pre-
determined random schedule 2.75 h before food delivery began in
each session. |n unpaired treatments, we moved one of the birds to
asmall, centrally located cage (placed on the floor about 0.5 min
front of the apparatus) so that the focal bird could see its partner,
but the partner could not forage. We videotaped the first 30 min of
food delivery in each session, and later recorded each starling’'s
X position every 20 s within this observation period.
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Perspective View

Dispenser
¥
Lip
27m
Side View Dispenser
I'e
Lip

38 cm

Fig. 5 Diagram of roof apparatus

Parameter estimation

The exploitation width (Vcr? +h2 ) is akey variable in our model,
but we were unable to control it in our experiment. While we
could control and measure the relevant properties of our experi-
mental sites (e.g., the source variance, 02), we only have crude
ideas about the foragers' reach (h?).

Source variance

Preliminary trials, run without any birds present, confirmed that
placement of the feeders gave accurate control over the mean po-
sition of pellet delivery. We used these data to estimate the stan-
dard deviation of delivery position, and found 0=9.25 cm, which
gives 02=85.6 cm2. Visual inspection of the histograms from these
preliminary trials supports the view that delivery position is ap-
proximately normally distributed.

Forager’sreach

One would like to measure the probability of successful consump-
tion when a food item is delivered at a range of distances (i.e., to
directly measure the reach function). Unfortunately, we were un-
able to make these observations with our apparatus. Informal ob-
servations suggested that starlings could reach items between 15
and 25 cm away, crudely 1-1.5 body lengths; while they did occa-
sionally “capture” items at greater distances, these successes
were relatively rare. If we take h=20 cm, then h?=400 cm?, and

T — 2
o2 +h2 =22 cm. Similarly, we estimate % to be near 0.2.

Statistical details

Finding statistical estimates of the pitchfork is not straightforward.
Suppose that an individual chooses the upper branch of the pitch-

fork half the time, and the lower branch half the time. Thisindivid-
ua’s mean position would be zero, a value that does not estimate
the branches of the pitchfork in any meaningful way. This suggests
that we might consider the absolute value or sguare of position, ef-
fectively folding the lower and upper branches of the pitchfork to-
gether to estimate a single value. This folding, however, makes it
difficult to evaluate the “handle” of the pitchfork where central po-
sitions (x=0) are predicted [even if E(x)=0, both E(x2) and E(|x])
will exceed zero, because the error variance will be “folded” onto
the positive side of the plane along with any real position effect].
To overcome these problems, we adopted a statistical model that
assumed positions X were random variables drawn with probability
p from a normal distribution with mean —k and variance v2, and
with probability 1-p from another normal with mean k and vari-
ance v2. From these assumptions, we were able to calculate the dis-
tribution of the absolute value of X which depends only on k and v
(i.e., p does not affect the distribution of the absolute value). Using
the analytically derived absolute value distribution, we calculated
maximum-likelihood estimates of k and v for each individua in
each separation and grouping treatment. In addition, we extended
this technique to test for bimodalities using likelihood ratios. To do
this, we calculated the maximum-likelihood estimate of k and v2
(assuming underlying bimodality), and another maximum-likeli-
hood estimate assuming a unimodal distribution by setting k=0 and
fitting only v2. Next, we used the values of the associated likeli-
hood functions (As) to calculate a likelihood ratio statistic. For a
. . D)\{OVZ} O
large sample size, the statistic A = —-2lo : where the A
g p g ME (

indicate the likelihood estimates) is X2 distributed with 1 df (Mood
et al. 1963).

Results

We designed this experiment to test the idea that posi-
tions follow a pitchfork pattern, and to test whether the
pitchfork is generally more “spread” in pairs, as our
models predict (Fig. 3). Fig. 6 shows histograms of the
raw position data lumped for al pairs and subjects. One
can see that the pattern is generally as expected, with the
distributions moving from unimodal to bimoda as
source separation increases. These effects also appear to
be more pronounced when the birds are paired, as the
model predicts. Strictly speaking, however, we should
only expect two equal-frequency modes in the paired
data; an isolated individua following our model might
produce either aunimodal or bimodal pattern.

Fig. 7 shows the estimated k values and two sets of
pitchfork predictions, one (solid curve) that seems to

give the best fit to the data (Vo2 +h2 =13cm) (fitted by
eye), and another (dashed curve) based on our crude esti-

mate of exploitation width (Vo2 +h2 =22 cm). At small

source separations (0, 10, and 20 cm), the median k esti-
mates are very near zero as predicted. ANOVA (Table 1)
shows significant (P<0.05) effects of pair (i.e.,, pair
identity), source separation, and two significant interac-
tion effects but no effect of grouping (i.e., paired or
alone). This F-test is based on asmall error df, and lacks
power. We can construct a more powerful test by pool-
ing, if we assume that there is no separation by grouping
interaction [F;,=2.67, P(F=2.67)=0.182]. An F-test
based on such a pooled error estimate does show a sig-
nificant grouping effect [F, ,=8.27, P(F=8.27)=0.024].



Fig. 6 Histograms of raw posi-
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Table 1 Analysis of variance table. Dependent measure is the maximum-likelihood estimate of k as described in the text. F-tests are
based on expected mean squares as specified in Myers and Well (1995)

Source of variation df Sum of squares Mean square F P(F)

(1) Par 3 14.2 4.74 9.99 0.025*

(2) Subjectswithin pair 4 19 0.475

(3) Source separation 6 153 254 9.61 0.0000832*

(4) Source separationxpair 18 47.7 2.65 2.08 0.047*

(5) Source separationx(subjects within pair) 24 305 127

(6) Grouping 1 14.6 14.6 53 0.105

(7) Groupingxpair 3 8.26 2.75 2.69 0.182

(8) Groupingx(subjects within pair) 4 41 1.02

(9) Groupingxsource separation 6 221 3.68 0.98 0.472
(10) Groupingxsource separationxpair 15 56.3 3.75 2.64 0.022*
(11) Groupingxsource separationx(subjects within pair) 20 284 142
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Fig. 7 Maximum-likelihood estimates of the aone (A) and paired
(B) data. Box plots summarize the data for each separation level (see
Cleveland 1993). Each box shows the median (horizontal line within
the box), 25th and 75th percentile points (lower and upper limits
of the box, respectively, and the extreme values (whiskers). The
heavy curve shows predictions for Vo2 +h2 =13 cm, avalue cho-
sen because it gives a good fit to the data, as judged by eye. The
dashed curves show predictions for our a priori estimate value of

e e— 2
No2+h2 =22cm. In B the assumption is that %=O.2, as esti-

mated from our data. The dashed line shows the position of the
source

In addition, Fig. 8 shows calculated bimodality test sta-
tistics (see Methods) for each bird in each treatment
combination. This figure strengthens the case for a
paired-alone difference, by showing that evidence for
bimodality is stronger in the paired treatment (recall that
these measures are assessed per individual, so bimodali-
ty is not a necessary consequence of the paired condi-
tion).

The data support our prediction that animals should
occupy the “center” until the distance between resources
exceeds some threshold (Figs. 7, 8). However, our crude
estimate of exploitation width (x/az +h2 =22 cm) seems
too large, since the data suggest a value near 13 cm. Al-
though this effect was not strong, the starlings tended to
be further from the center in the “paired condition.” The
clearest contradiction occurs at larger resource separa-

30 -

20 4

Bimodality Test Statistic

10

Source Separation (cm)

Fig. 8 Values of log-likelihood test statistic A testing the hypothe-
sis that k=0 (i.e., the position distribution is unimodal). The
dashed line shows the critical value. We reject the hypothesis of
unimodality if A > x3g¢s(1) =3.84. Note that A was calculated for
individual birds, so the evidence for bimodality in pairs should
not, in principle, be enhanced because we are examining a mixture
of the positions of two individuals

tions. Although the birds showed a steady movement
outward as source separation increased, they were closer
to the center than expected at large resource separations
(Fig. 7). This deviation from our predictions holds in
both the individual and paired conditions, athough it is
most striking in the alone condition.

Discussion

In most of the spatial models of behavioral ecology, the
spatial entities — patches, sites, habitats — are discrete
and hard-edged (see Arditi and Dacorogna 1988, for a
noteworthy exception). Our model explores an elemen-
tary approach to softening these edges, which emphasiz-
es the costs and benefits experienced by individuals.
Taking the simplest IFD (two point sources, continuous
input, two players) as our starting point, we have asked:
how does the distance between sources affect an ani-
mal’s position? This simple question raises issues of
general significance: What is the zone of “exploitable”
space around a forager like? How does distance affect
the intensity of competition? While our answers to these
guestions must be seen as preliminary, the questions
themselves are basic to any complete, spatially explicit
foraging theory.

The model and the data

For two foragers and two equivalent sources, the con-
ventional, distinct-sites IFD predicts one forager at each
site. Although the IFD per se makes no prediction about
the one-player situation, a single forager following the
intake-maximizing logic of the IFD should be indiffer-
ent. In both cases, the distinct-site logic of the IFD sug-



gests that foragers should position themselves at one
source and ignore the other regardless of source separa-
tion. An anima adopting this source-tracking tactic
should choose an average position that is the same as the
source position, and it should not bias its position to one
side or the other. The data show, however, that starlings
were biased toward positions between the two sources.
On average, the birds were 4.05 cm (95% confidence
limits: 2.37-5.74 cm) from the source, and up to 10 cm
from the closest source when source separation was
large. So, our results do not support a source-tracking
model.

This evidence against source-tracking aso challenges
our models, because they predict source-tracking at large
source separations. We offer two possible explanations.
First, social cohesion may create a bias toward central
positions, (recall that a non-foraging partner is present,
in a central cage, during the “alone” treatment). Howev-
er, the deviation toward the central position was strong-
est in the alone treatment, which is more consistent with
competition than social cohesion, since the partner is
on average closer in the aone treatment. Second, the
Gaussian functions used in our models may over-empha-
size proximity. Functions that are more “broad-shoul-
dered” than a Gaussian might explain our results. If star-
lings can do nearly as well at 10 cm from the source as
they can from 0 cm, then this tactic may put them 10 cm
closer to the aternative source without sacrificing gains
from the closer “primary” source.

We have imagined Gaussian reach and distribution
functions that, we feel, are reasonable guides to our intu-
ition. There are, however, many other possibilities. It is
difficult to generalize about alternative distribution func-
tions because almost anything is possible — resources
may be concentrated at a single point, spread uniformly
throughout a given space, or have many peaks of abun-
dance. While one can apply the principles outlined here
in even the most complex situations, we do not expect
the simple predictions of our model to apply in all situa-
tions. As mentioned earlier, we expect the motor and
sensory abilities of the forager to determine the reach
function. The reach function for alaterally oriented elec-
trolocating fish will certainly differ from a starling’s. In-
corporating these differences is an important challenge
for our approach.

Extensions and alternatives

While our models have focused on simple, experimental-
ly tractable situations (two players, two sources, and one
spatial dimension), the principles at work are general. It
is not difficult to calculate afocal individual’s gainsin a
many-player, continuous-gradient version of our model.
Howeuver, it is difficult to find the many-player equilibri-
um using this calculation. In most cases, one will have to
find this solution numerically. Thisis typical of spatially
explicit models, and it is one reason why multiple ap-
proaches are so important (see Tilman et a. 1997).
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Other approaches

Sasaki (1997) presents a model that complements ours.
Sasaki’s basic model is a modified Lotka-Volterra com-
petition model with diffusive movement, in which a
probability distribution function specifies the spatial dis-
tribution of a population of mobile animals. In addition,
a Gaussian function of competitor proximity determines
the intensity of competition. In contrast with our model,
Sasaki assumes that a forager can only exploit resources
at its position, (in our terminology, the zero-reach case).
Sasaki shows that individuals should be clumped even in
a uniform resource gradient. Sasaki’s approach comple-
ments ours, because it models an important many-player
situation. Another family of models that addresses the
spatia consequences of feeding decisions has focused on
the vertical migration and distribution of zooplankton
(e.g., Iwasa 1982; Gabriel and Thomas 1988; Giske et al.
1997). Of these, the paper by Giske et a. (1997) makes
the most explicit connection to the IFD.

Rule-based models.

Our model [like those of Sasaki (1997) and Giske et al.
(1997)] focuses on the economics of position. An alter-
native, and only partially explored, approach is to con-
sider the economics of movement rules and then to de-
duce the consequences of these rules for spatial distribu-
tions. For example, a population in which each individu-
al follows a gradient-climbing rule will reach a predict-
able spatial distribution, and given sufficient information
about the spatial distribution of resources, we should be
able to calculate this. The mathematical advantage of a
rule-based approach is that al individuals can use the
same rules, even though they cannot adopt the same po-
sitions, so a rule-based approach may generalize to large
numbers of players more easily (see Bernstein et al.
1988, 1991 for an example).

Spatial issuesin the IFD

Theoreticians have modified the IFD in many ways (see
Tregenza 1995 for review). In the next few paragraphs,
we discuss how our approach complements three impor-
tant themes in IFD modeling.

Interference models

Since the publication of Sutherland’s (1983) seminal
paper, it has become conventional to distinguish between
continuous-input models (as developed here and by
Fretwell and Lucas 1970) and interference models (as
developed by Sutherland). The interference models are
commonly applied to field situations in which prey is
very abundant and depletion relatively unimportant. In
addition, it is widely reported (Parker and Sutherland
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1986; Kacelnik et al. 1992) that these interference mod-
els do not fit the data as well as the continuous models.
Although we have restricted ourselves to exploitation
competition, spatially explicit techniques may provide a
powerful way to model interference competition.

Competitive asymmetries

Many students of the IFD have emphasized competitive
asymmetries (Parker and Sutherland 1986; Rosenzweig
1986; Sutherland and Parker 1992). Each of these mod-
els must somehow solve the problem of mathematically
representing a range of competitive abilities. The models
developed by Parker and Sutherland, for example, as-
sume that each individual has an intrinsic competitive
“weight.” These weights are rather ad hoc measures, and
one is bound to wonder where they might come from.
Thinking spatially can provide a new way to think about
competitive asymmetries. For example, one can imagine
a situation where individuals have measurably different
reach functions that determine their competitive abilities.

Resource dynamics

A third area where an explicitly spatial perspective
might prove rewarding is in models allowing more com-
plex resource dynamics, e.g., accumulation and deple-
tion. When accumulation and depletion are allowed, sta-
ble patterns of movement between sites can be an impor-
tant part of the solution (see for example Schwinning
and Rosenzweig 1990). Clearly, the costs and effective-
ness of movement between sites depend on the explicit
spatial arrangement of sites.

The spatial scale of behaviora ecology

Many questions in behavioral ecology are fundamentally
spatial questions, and behavioral ecology has arich tra-
dition of spatial modeling. Most of these models view
the world as a patchwork of distinct recognizable sites.
Yet, we have no theory to guide our attempts to superim-
pose a patchwork on a natural world of fuzzy bound-
aries. We have considered the spatial scale of patchiness
via theory and experiment. Our approach offers away to
formalize these fuzzy boundaries, and our preliminary
experiment shows how these problems can be studied.

Appendix
Optimal position for an individual

Imagine a single forager at position x along a line. We want to
know how the forager’s position affects the benefits it receives.
Consider the probability that a particle of food will arrive at posi-
tiony. If food arrival positions follow a normal distribution, then

the probability that a source at s will deliver a particle of food in
theinterval [y,y+dy] is:
(y—sz)2
Pr(food at y) = f(y)dy =-£-=7—dy
oN2m
where 02 is the variance in food delivery position about central
position s.

We consider, in addition, another Gaussian function that we
call the reach function. This reach function determines the proba-
bility that a forager will capture an item delivered at y when it is
positioned at x.

y=x)2

Pr (capturefood |food at y & forager at x) = r(y) = pye  2h?

For example, the forager captures items with probability p, if they
arrive at its position (y=x), but the probability of capture decreases
as the distance between x and y increases. The parameter h? deter-
mines the width of the forager’s reach; if h2 is small, the probabili-
ty of capture falls quickly with distance, but it decreases more
slowly if hZislarge.

The total probability of capturing a particle at y is the product
of the reach and distribution functions:

_(y-9?
e 20?2

oo
To calculate the overall probability of capturing an item dispensed

by the source at s, we integrate over all possible delivery posi-
tions:

_(y—x)?
poe 2h2

(y=9)?
e poh

S e 2 ———dy=———
[P0 o~2m ~h2 + g2

Taken together, the reach and spatial distributions behave like a
single Gaussian function with width parameter g2+h2. We call this
the exploitation function, and we call (w"dz +h? ) the exploitation
width (Fig. 1).

Two sources. Next, we suppose that there are two point sources.
We position one source at —s and the other at s, so that position
zero is the center. Now suppose that the source at —s dispenses
food at rate r, and the source at s dispenses food at rate r,. This
gives atotal benefit of

(x=s)2

e 2(aZ+h?) (A1)

(x+s)? (x=s)?
-— pOh D 2+4+h2 2 +h2 D
G(X) = —=—— ,e2(02+h?) 1 @2(02+h?)

9 vh2 + g2 Hl 2 E
Scaling. Now, it is natural to think in terms of the exploitation

width, Va2 +h2 | which represents the width of a zone of exploi-
tation about a point source. Consider the rescaled variables:
x=—X

Vo2 +h?2

S
A=———— and
Vo2 +h?2

(A2)

_o0o?
9=
with these substitutions, Eq. A2 becomes

po % _()A(+A)2 _(i—A)ZD
Jeg 07 TR T D (A3)

where we can think of 2A as the effective separation of the sourc-
es, since it measures the separation of sources in terms of the for-
ager’'s zone of exploitation. In addition, it is useful to define

p= %, so that p gives the forager’s position as a directed propor-

tion: p=0 means that the forager is in the center, p=—1 means that
the forager is at the left source, p=1 means at the right, and so on.
Thisgives

Teg o

A2 (p+1)?

(p-1)
e ¥ e a

r, (A4)



Optimization
In choosing p to maximize total benefits (i.e., Eq. A4) we can

neglect the common factor __Po | so we maximize

e ey VT
ez +re” 2

Differentiating with respect to p gives

( 1)
rlgAZ(p+1)e_Az o EHZS[A (p-De™ ° E

factoring

22 (p24) 2
e 7" 7 [n(1+ p)e’P —ry(1- p)e¥r]
Focusing, now, on the term in square brackets

0 = n(l+p) et —ry(1-p)err
n(d+p)etr = ry(1-p)err

1+ p = i N2

1-p I2 e

taking logarithms of both sides

1+p 00
In( p) 2A2p+ln oOri0 (A5)
While this expression only gives the critical 4G _ 0) p vaues

implicitly, it lends itself to a graphical analysis that shows the
qualitative properties of the solution. The left-hand side of Eq. A5
is a curve that resembles a vertically stretched plumber’s trap
(Fig. 9), and the right-hand side is a line with slope 2A2 and inter-

cept In[| 2] g [in Fig. 9 ry=r, o InD 2 D—
belween sourc&s (4) increases, the Ilne on the right-hand side of
Eqg. A5 becomes steeper. When the line is shallow, it crosses the
curve only at zero, but when it is steeper, it crosses the curve at
three points, say — 0, and p is some non-zero value). Differentia-
tion of both sides of Eq. A5 shows that the transition from one to
three solutions occurs when A2=1. Moreover, we can show that the
solution p=0 is maximum when A2<1 and a minimum when A2>1,;
similarly, the pairs of non-zero solutions are always maxima when
they occur (i.e., when A2>1). Putting these elements together
shows that the graph of optimal position (p) versus source separa-
tion (A) traces out a pitchfork shape, with a single maximum at
zero when A<1 and two coequal maxima that are symmetric
around O when A>1.

0]. As the separation

Approximation

Although we are unable to solve Eq. A5 for p explicitly, we can find

an approximate solution. We recognize that In( ﬁ B):Ztanh-l(p),

substituting into Eq. A5 and rearranging we have
-1,

tanhp (p) _ N2

which isolates p on the left-hand side. Next we expand the left-
hand side in series, and perform a series reversion (using the com-
puter algebra software Maple) to find

(A6)

p=13( 1) 53(Va2-1)’+0 wAz—ls] (A7)
Now, Eq. A6 suggests something like
p =+ tanh [f (4)] (A8)

where f(A) is an unknown function of A. If we choose f (A) =
V342 -1), then the first term of a series expansion of Eg. A8
agrees with the first term of Eq. A7. This logic gives the approxi-
mate solution
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Fig. 9 Graphical solution of Eg. A5. The solid curveis In( g

that is, the left-hand side of Eq. A5. The dashed line shows the
2A?p for A%<1; here the line intersects the curve only once. The
finely dashed line shows 2A2p for A2>1; here the line intersects the
curve in three places. Generally speaking, as A increases, “the
line” rotates counterclockwise about (0,0); as it rotates, there is
transition from a single intersection at zero to three intersections

1.0

0.5

0.0
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Fig. 10 Solid curves show an exact numerically calculated plot of
optimal position p vs source separation A. The dashed curves
show the approximation given by Eqg. A9

A<l
pr= gtanh(\/S(Az ~)) a>1

Figure 10 superimposes this approximation with an exact numerical
solution, and shows that there is very good agreement between them.

(A9)

The two-player game
Competition in space

Consider afood particle arriving at position y along our line. Sup-
pose that if feeding alone forager 1 obtains this item with proba-
bility 1, as specified by its reach function; similarly, if alone, for-
ager 2 obtains this item with probability 15,. Now, the probability
that both will fail to capture the item is (1-1,)(1-Tt,), so the proba-
bility that the item is captured by either forager 1 or forager 2 is

1-1-m)(1-m) =T+ TL,—T4TL, (A10)
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Now, we would like to know how frequently forager 1 captures
the item, given that the item is captured. An application of Bayes
theorem gives:

-
Pr (1 captures| Someone captures) = 5 (A11)
Combining Eqg. A10 and Eq. A11 we have

™ + T% (m+ -1 5)
which we rewrite as

o, und- 1)
m+Th m+Th

The term %_T;D has the product of three probabilities in
1

its numerator, and it is likely to be small. We, therefore, neglect it
and take

U

L)
1+ 0
as a modified reach function that incorporates competitive effects.
This formulation agrees with the conventional IFD in two impor-
tant cases: if the competitor has no chance of obtaining food
(1,=0), the focal individual’s gains are unchanged; if the competi-
tor has the same probability of obtaining food (T,=Tt,), then the fo-
cal individual’s gains are cut in half.

The reach and distribution functions developed in the previous
section can be used to calculate Ty, and T1,. Consider food delivery
at an arbitrary position y from a source at s, when the focal indi-
vidual isat x; and a competitor is at X:

USSP s
2h
mmu?? Po® ov2n
(Y _y%)?
1+ 2
T[l(y) 1+%
e 2n?

where we assumed that the two foragers are equivalent (same h

and p,) except for their positions. We can rearrange the quotient in

the denominator to make this
_y=x)? _(y-9)?

Py e 2h2 @ 202 dy
oV2m 1+ erl—Xz DDXf;Xz VE
where the factor

1

OX1—X2 DDX1+X2 0
1+ef @ 072 0

(A12)

(A13)

represents the intensity of competition at position y. The text gives
an intuitive explanation of thisterm (Fig. 4).

Now Eq. A12 gives the benefits that individual 1 obtains at po-
sition y given a source at s and an equivalent competitor at X,. To
find the benefits from all possible y positions, we want to integrate

_ )2 (y-9)?
Ioo pp € 2h2 e 202 dy
- / OX—X O00%tXe 0O
avV2TT R i e [

1+e
The problem here is that we cannot integrate this analytically. We
can, however, find an approximation using Laplace's method
(Nayfeh 1981). Applying this technique we find that

_ (4-9)?
)2 (y-92 _ PN oz
s Pp e 2 e 202dy . Jh?2+g2 %
—o0 [ OX—X% O0%X1*X _ 0 OX4—X 00X +Xp _ 02X +sh? [
ovam 1+ed® 00 2 Y0 g, JTh 00 2 o2k O

Numerical experiments show that thisis an excellent approximation
of theintegral when h>0. We may think of the requirement that h>c
as applying to the point source case; that is, the situation where the
spread about a source is small relative to the forager’s reach.

Applying this approximation to the situation where there is one
source at —s and another at s gives total benefits of

_ars? _ (=92
ie 2(0Z+h?) Le 2(0Z+h?)
r vh2 + g2 +r Vh2 + g2
1 Xa—Xp 00X tX, 02xq+sh2 )~ 2 %=X 0% +Xy 02x+sh2 [
1+t h2 0o 2 02+h2 [ 1+e b2 0O 2 02+h2 [

To proceed, we simplify the expression in several ways. First, we
restrict our attention to the experimental situation in which
poh .
————. Third,

vh2 + 02
we rewrite this expression in terms of our standard substitutions
~ X s

- o2
X1 — , A= yand g=—.
o2+ Joz+he 2

Finally, we introduce the computationally useful substitutions

r,=r,=r. Second, we drop the common factor r

p = X' to obtain
_Az(p]_;']-)z

G(pw P2) =
P P2 1+e%(prpz)(p1+pz—g(p1—pz)+2)

(p+1)?
e¥ 7

Al4
1+ eA—ZZ(pl—Pz)(Pﬁ'pz—g(Per)—z) (A1)

This expression (A14) specifies the benefit to player 1 in terms of
its position, p,;, and its opponent’s position, p,. However, the sub-
scripts are arbitrary, so we can readily calculate the benefits to
player 2, using G(p,, p,). To find the Nash Equilibria (NE) for this
game, we seek the rational reaction sets for each player. That is,
we want to find player 1's best response to any player 2 choice,
and player 2's best response to any player 1 choice. NE are inter-
sections of these rational reaction sets. It is natural to begin, there-
fore, by seeking a p, value that maximizes G(p,, p,) for an arbi-
trary p,. Thisis amathematically daunting task, which we can on-
ly do numerically. Using the non-competitive situation as a model,
we can however find a useful characterization of the NE by ex-
ploring two special cases.

The p,=p,=0 equilibria

It is straightforward to establish that
0G|

apl P=0, p,=0
so we know that p;=0 is an extreme point when the opponent is

at 0. To determine when this is a maximum, we consider the
second derivative

A2
0226 =& 7 (344 +g)

apl p=0, p,=0

The extreme at p; will be a maximum when the second derivative
iS negative, so we reguire

3+4A2+g<0

Solving for A2, we find, therefore, that there will a NE at p,=0,
p,=0 whenever

=0

N2 <§_g

T (A15)

The mirror image NE

Our situation is highly symmetric — i.e., two equivalent foragers,
two equivalent sources equidistant from the center. In addition, the
optimization problem revealed two coequal solutions symmetric
about the center (when A>1). We conjecture, therefore, that NE
such that p,=—p,=p#0 will exist. That is, we hypothesize the exis-



tence of non-central (non-zero) NE positions that are mirror imag-
es of one another.
To investigate this possibility we consider

0G
M(p) = 5

on PL=p. P2 =p
Plots of M(p) show a function that has a cubic-like shape. There is
always aroot at p=0 and in some situations there is also a pair of
mirror image roots at some value +pz0. These mirror image roots
will exist when the slope of M(p) at zero is positive:

N2
M| = L% (3+2g+50) >0

dp o
or when
-3+2g+5A? >0
5/A? >3-2¢g (A16)
2
We conclude that mirror image NE will exist whenever A2>%—2—59.

Notice that the condition A15 for the existence of an NE at
p;=p,=0 overlaps with the condition A16 for the existence of non-
zero mirror image NE we just derived. We expect, therefore, that
two NE will exist when

Numerical solutions

We used numerical root-finding routines to find the non-central
equilibriathat are solutions of M(p)=0, for A2 > %—2—59 Figure 11
shows the calculated equilibria based on these results. As in the
optimization case, we see a pitchfork shape. The key difference is
that here the handle of the pitchfork extends into a short central
tine that represents the region where there are two NE (recall that
we interpret the positive and negative tines of the pitchfork as a
single equilibrium, one individual should be on the positive
branch and another on the negative). The figures shows plots for a
range of g values.

Figure 11 shows that the non-central equilibria are similar in
form to the non-central solutions we found in the individual opti-
mization case. This suggests that an approximation similar to
Eqg. A9 may be appropriate. Numerical experiments show that

[ 3 2g\ld
= | 212 =2
p ttanhB\@A (5 5 )]H
gives an excellent approximation when g is small (recall we re-
quire g<1). Dashed curvesin Fig. 11 show this approximation.
We can, therefore, offer areasonably complete characterization
of the NE for this two-plaver game s g

Central NEp; =p, =0 when A2<>Z—-=

5-3 (A17)

Non-central NE p, = p,p, =—p p:tanhg\/glAz_(%_z_g)] @

3 2
ne>3-3 (A18)
The key differences with the individual (one-player) case are (1)
the non-central solutions arise at smaller source separations (A2=1

for the one-player case, A2 = %—2—59 for the two-player case); (2)

the non-central equilibria separate more quickly with increasing
A, and (3) central and non-central solutions exist from some pa-
rameter values in the two-player case, but not in the one-player
case.
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Fig. 11 Three plots of effective source separation (A) vs Nash
equilibrium p-values. The solid lines show numerical calculated
values. The dashed lines show the approximation A18
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