
principle, that P(qjp) remains the same when computed on an
enlarged space. This is the only way in which one can guarantee
that enlargements of the probability space in the limit lead to a
coherent probability distribution – the starting point of Bayesian
rationality.

(2) An orthodox Bayesian alternative would be a construction
in which the probability spaces remain the same (namely, the
universal space based on all possible propositions), but the prob-
ability distributions change. In our toy world, the probability
space is in both cases fp, q, rg, but one could assume that the
probability distribution first assigns probability 0 to not-r, and,
upon becoming aware of the second conditional “if r then q,” a
nonzero probability. The trouble with such a suggestion is that
from a Bayesian point of view, the transition from the a priori
probability P(not-r)¼0 to the a posteriori P(not-r) . 0 is not
allowed, because this cannot be achieved via (BaCo): conditiona-
lizing on more evidence cannot make a null probability positive.
One thus needs an additional rationality principle (beyond
[BaCo]) governing such transitions. In the absence of such a
principle, one has to assume that the probabilities of all non-
salient exceptions (such as not-r) are initially very small but
nonzero. This increases the computational complexity of prob-
abilistic reasoning enormously: One requires massive storage
and intricate computations to maintain consistency of the prob-
ability assignment.

These considerations show that in order to account for the data
on the suppression task any probabilistic model needs to be sup-
plemented with a theory about nonmonotonic and non-Bayesian,
but still somehow rational, changes in degrees of belief. One may
then question whether a probabilistic model is necessary at all;
Stenning and van Lambalgen (2005; 2008a) provide a model
cast entirely in terms of nonmonotonic logic.

The dynamics of development: Challenges for
Bayesian rationality
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Abstract: Oaksford & Chater (O&C) focus on patterns of typical adult
reasoning from a probabilistic perspective. We discuss implications of
extending the probabilistic approach to lifespan development,
considering the role of working memory, strategy use, and expertise.
Explaining variations in human reasoning poses a challenge to Bayesian
rational analysis, as it requires integrating knowledge about cognitive
processes.

Bayesian rationality highlights the remarkable successes rather
than failures of human reasoning by recasting seemingly erro-
neous reasoning in logical tasks using a probabilistic approach.
However, in their book Bayesian Rationality (Oaksford &
Chater 2007, henceforth BR), Oaksford & Chater (O&C) draw
a rather static picture of human reasoning by focusing on
typical patterns of responses from adults. We propose a more
dynamic perspective, which considers that reasoning systemati-
cally varies within individuals over the lifespan (Howe & Rabino-
witz 1996; Markovits & Barrouillet 2002) and between
individuals with different levels of knowledge and expertise
(Ericsson et al. 2006). Although O&C acknowledge the import-
ance of considering reasoning data on individual differences
(BR, p. 288) and on information processing capacities (p. 290),

they do not adequately account for how variation influences a
Bayesian rational analysis of reasoning. Anderson (1991a) and
others have pointed out that perhaps the major potential limit-
ation, the “Achilles heel,” of rational analysis would be compu-
tational constraints that are too complex or arbitrary. We argue
that our understanding of the mechanisms of change in reasoning
can help us specify computational limitations for probabilistic
modeling and assess whether a single model can capture the
complexities of reasoning.

Many important aspects of cognition change over the lifespan,
and reasoning is no exception (Baltes et al. 1999). According
to Piaget, both logical reasoning and probabilistic reasoning
emerge from adolescence to young adulthood at the highest
stage of cognitive development (Piaget & Inhelder 1975).
Subsequent research, however, has qualified these findings,
showing that younger children understand aspects of such reason-
ing (Falk & Wilkening 1998; Galotti et al. 1997). Furthermore,
reasoning continues to develop during adulthood with perform-
ance in specific domains increasing as individuals gain reasoning
knowledge and expertise (Ericsson & Lehmann 1996; Sternberg
1999). Yet, overall across the adult lifespan, abstract reasoning
(measured by intelligence tests) declines with age (Verhaeghen
& Salthouse 1997). Thus, reasoning is a dynamic aspect of cogni-
tion that varies with age and experience and results from the inter-
play of biological processes (e.g., brain maturation) and
enculturation (e.g., education) (Baltes et al. 1999).

A developmental perspective may inform Bayesian rational
analysis by specifying computational limitations of the cognitive
system. An important limitation faced by the human cognitive
system is working memory capacity – a key determinant of
reasoning performance (Kyllonen & Christal 1990). Like other
cognitive capacities, working memory systematically changes
across the lifespan by steadily increasing during childhood
(Conlin et al. 2005) and declining across adulthood (Verhaeghen
& Salthouse 1997). Working memory, therefore, poses a dynamic
constraint on the rational analysis of reasoning.

Although O&C are currently silent on the role of developmen-
tal changes in working memory and reasoning, they do note that
individuals with higher working memory capacities tend to
exhibit more logical reasoning. To illustrate, in the Wason selec-
tion task, a subgroup of individuals (ca. 10%) consistently chooses
the logically correct combination of cards, indicating that
although most seem to adopt a probabilistic model, others
clearly do not. O&C suggest that this variation in behavior pri-
marily reflects deliberative strategy use and educational (train-
ing) differences, which are “not indicative of individual
differences in the nature of the fundamental principles of
human reasoning” (BR, p. 288). This claim seems problematic
given what we know about the interplay between strategy use,
training, and basic cognitive mechanisms. Of course, cognitive
capacities can constrain the strategies that people use;
however, specific strategy use and training may shape the basic
cognitive mechanisms, as well. Differences in memory strategies
(e.g., rehearsal, chunking) can also alter basic mechanisms of
working memory capacity and its relationship to cognitive per-
formance (Cokely et al. 2006). In addition, both extensive prac-
tice with specific strategies and the acquisition of knowledge
and expertise dramatically expand working memory (Ericsson
& Kintsch 1995). Indeed, as training changes deliberative strat-
egies to automatic processes, the cortex can undergo functional
neuroanatomical reorganization (Dick et al. 2006). Thus, it is
possible that deliberative strategy use and training may influence
reasoning precisely because they alter underlying cognitive
mechanisms such as working memory. Given the complex
relationship between strategies, training, and cognitive mechan-
isms, it seems premature to dismiss individual differences in
strategy use as not fundamental to reasoning. A comprehensive
model of human reasoning must account for these differences.

Variation in human reasoning has proven difficult to capture
for probabilistic models (Shultz 2007), although recent research
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has made some progress applying probabilistic models to individ-
ual differences (e.g., category learning; Navarro et al. 2006) and
cognitive development (e.g., causal reasoning; Sobel et al. 2004).
This work represents a step in the right direction; however, we
expect that no single model can predict reasoning performance
equally well across age groups and levels of experience.
Indeed, systematic variations in peoples’ behavior suggest that
several different models (or modifications of a given model)
may be required to explain developing behavior (Shultz 2007).
Nevertheless, investigating differences between the models
across age groups and skill levels may help us to understand
more exactly “what differs” between and “what develops”
within individuals.

In closing, we must emphasize O&C’s comment that probabil-
istic models are often only functional level theories that should
not be confused with algorithmic level theories (process
models). Brighton and Gigerenzer (2008) have pointed out in
their discussion of the limits of Bayesian models of cognition
that the question of why the human mind does what it does (func-
tional level) cannot be separated from the question of how the
human mind does it (algorithmic level). Therefore, it is crucial
that future Bayesian rational analyses specify how exactly their
functional level models constrain theorizing about cognitive pro-
cesses. This issue is especially relevant as the data connecting
development, expertise, working memory, and reasoning imply
that multiple strategies (and therefore processes) are at play.
Though Bayesian rationality seems to provide a functional level
account of prototypical adult reasoning, the development of cog-
nitive capacities and expertise remains underappreciated.
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Abstract: The probabilistic approach to human reasoning is exemplified
by the information gain model for the Wason card selection task.
Although the model is elegant and original, several key aspects of the
model warrant further discussion, particularly those concerning the
scope of the task and the choice process of individuals.

In the book Bayesian Rationality (Oaksford & Chater 2007, hen-
ceforth BR), Oaksford & Chater (O&C) present a summary and a
synthesis of their work on human reasoning. The authors argue
that formal logic and deduction do not explain how people
reason in everyday situations. The deficiencies of the most
simple forms of logic are obvious when one considers that they
may assign “true” to absurd statements such as “if the moon is
blue, than cows eat fish” (BR, p. 70). More importantly, the
authors propose that, in contrast to formal logic, probability cal-
culus does provide the right tools for an analysis of human
reasoning. Thus, the authors argue that people solve deductive
tasks by inductive methods. From this perspective, human
reasoning can be characterized as Bayesian or rational.

Consider the Wason card selection task discussed in Chapter
6. Participants are confronted with four cards, showing an A, a
K, a 2, and a 7. Participants are told that each card has a number

on one side and a letter on the other. They are given a rule, “if
there is an A on one side, then there is a 2 on the other side,”
and subsequently, have to select those cards that need to be
turned over to assess whether the rule holds true or not. A
moment’s thought reveals that the cards that need to be turned
over are the A card and the 7 card. Yet, the majority of participants
do not choose the 7 card, but tend to choose the 2 card instead.

O&C propose an elegant Bayesian model – the information
gain model – to account for people’s performance in the
Wason task. According to the model, people select the cards
that reduce their expected uncertainty the most. Specific
assumptions about the rarity of the information on the cards
lead to the conclusion that selection of the 2 card might be
rational after all.

The information gain model has been subjected to intense
scrutiny (e.g., Oberauer et al. 1999). For non-experts, the
details of this discussion are somewhat difficult to follow.
A useful guideline is that a model should only be abandoned
when it can be replaced with something better. And – criticisms
raised against the information gain model notwithstanding –
I have not come across a model that does a better job explaining
how people make their card selections.

Despite its simplicity and elegance, some important details of
the information gain model were not clear to me. First, O&C
argue, on page 210, that their account only holds if participants
regard the cards as a sample from a larger population. Perhaps
the authors could spell out this argument in a bit more detail.
Taking probability as a reflection of degree of belief, I did not
immediately see what calculations are in need of adjustment.
Second, the authors mention that participants who realize that
the cards are not sampled from a larger population would
always choose the A card and the 7 card. I do not know
whether this prediction has been tested empirically, but I find
it only slightly more plausible than cows eating fish. Note that
in the Wason task a substantial proportion of participants do
not even select the A card.

Another issue that warrants closer examination is the way the
model’s predictions relate to the data. In the information gain
model, each card reduces the expected uncertainty to some
extent. Why then does an individual participant not select all
four cards, but generally only selects one or two? In other
words, it was unclear to me how the model, from a consideration
of expected uncertainty reduction, can predict card selections for
an individual participant.

A fourth point concerns the role of individual differences. As the
authors discuss on page 211, a subgroup of undergraduate students
with high intelligence (about 10%) do select the A card and the 7
card. This result strengthened my initial belief that a motivated,
intelligent person would always choose the A and 7 cards, when
given sufficient time. In the spirit of falsification, I then tested
this assumption on a colleague, who of course immediately
selected the A and 2 cards. Perhaps she was not sufficiently motiv-
ated to think the problem through carefully – would incentives of
time or money increase the selection of the 7 card?

O&C are to be admired for their principled approach to quan-
titative modeling, and for their courage to take on the unassailable
dogma of human irrationality. It is unfortunate that much of the
material in the book was already available elsewhere (e.g., Oaks-
ford & Chater 2001; 2003b); therefore, it was not entirely clear
to me what the book adds to our current knowledge base.

One final comment. It strikes me as paradoxical that research-
ers who argue for a coherent, rational approach to human reason-
ing then proceed to apply an incoherent, irrational approach to
the statistical analysis of their experimental data. Throughout
the book, the authors renounce Popper’s stance on the import-
ance of falsification, arguing that this is not how science works,
nor how people reason. But then, in the very same work, the
authors measure the validity of their models by means of p-
values, and include statements such as “the model could not be
rejected.” Why?
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