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Abstract

Intertemporal choices involve assessing options with different reward amounts
available at different time delays. The similarity approach to intertemporal
choice focuses on judging how similar amounts and delays are, yet we do
not fully understand the cognitive process of how these judgments are made.
Here, we use machine-learning algorithms to predict similarity judgments
to (1) investigate which algorithms best predict similarity judgments, (2)
assess which predictors are most useful in predicting participants’ similarity
judgments, and (3) determine the minimum number of judgments required to
accurately predict future judgments. We applied eight algorithms to similarity
judgments made by participants in two data sets. We found that neural
network, random forest, and support vector machine algorithms generated
the highest predictive accuracy. Though neural networks and support vector
machines offer little clarity in terms of a possible process for making similarity
judgments, random forest algorithms generate decision trees that can mimic
the cognitive computations of human judgment-making. We also found
that the numerical difference between amount values or delay values was
the most important predictor of similarity judgments, replicating previous
work. Finally, we found that the best performing algorithms such as random
forest can make highly accurate predictions of judgments with relatively
small sample sizes (~15), which will help minimize the numbers of judgments
required to extrapolate to new value pairs and aid in determining how
future data collection studies can be designed. In summary, machine-learning
algorithms provide both theoretical improvements to our understanding of the
cognitive computations involved in similarity judgments and intertemporal
choices as well as practical improvements in designing better ways of collecting
data.
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Introduction

Intertemporal choices are a critical class of decisions that involve choosing between
rewards available at different times (Read, 2004). We all face these decisions on a daily
basis. Would you prefer to buy the latest gadget or put that money away for retirement?
Would you prefer to consume a decadent dessert or avoid the calories for a slimmer waistline?
Researchers of intertemporal choice typically probe people’s preferences by providing a series
of choices between smaller amounts of money available after a short or no delay and a larger
amount available later (e.g., Would you prefer to receive $10 today or $12 in one week?).

Though temporal discounting is the dominant approach to intertemporal choices (Doyle,
2013), an alternative heuristic model asserts that similarity judgments can account for these
choices (Leland, 2002; Rubinstein, 2003). For example, if people find the reward amounts to
be similar (e.g., $10 vs. $12) but the time delays to be dissimilar (e.g., today vs. one week),
they may ignore the similar attribute and choose based on the dissimilar attribute (e.g.,
choose the immediate option). This approach predicts intertemporal choices well when it
can make predictions (Stevens, 2016), but it raises the question of what drives similarity
judgments.

Previously, we used machine-learning algorithms to assess similarity judgments (Stevens
& Soh, 2018). Machine learning is a powerful set of tools that “sift through data looking for
patterns” (p. 1, Kuhn & Johnson, 2013). Researchers can input predictors to evaluate if
machine-learning algorithms can predict responses (Hastie, Tibshirani, & Friedman, 2009).
In our case, we were interested in which features of the amount and delay values predicted
people’s similarity judgments. We proposed a particular type of machine-learning algorithm
(decision trees; Murthy, 1998; Fürnkranz, 2010) as both a potential predictor of choice and
a reasonable approximation of the cognitive process that people could use to make the
similarity judgments. We found that these decision trees accurately predicted choice (about
86% predictive accuracy) and that the numerical difference between the large and small
amounts and delays (large − small) and the numerical ratio between them (small / large)
were the best features for predicting similarity judgments.

The aim of that study was to investigate a decision tree called Classification and
Regression Tree or CART (Breiman, Friedman, Olshen, & Stone, 1984). This algorithm was
chosen because it was a fairly simple decision tree algorithm that is well-studied and could
provide a relatively straightforward cognitive process model of decision making. Yet there
are many potential machine-learning algorithms that could be used to classify similarity
judgments based on the numerical values of the small and large amounts and delays. One
key aim of the current study is to test a range of algorithms on our data to determine which

Jeffrey R. Stevens, Department of Psychology, Center for Brain, Biology & Behavior, University of
Nebraska-Lincoln; Leen-Kiat Soh, Department of Computer Science and Engineering, University of Nebraska-
Lincoln.

Correspondence concerning this article should be addressed to Jeffrey R. Stevens, B83 East Stadium,
Center for Brain, Biology & Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA. E-mail:
jeffrey.r.stevens@gmail.com



SIMILARITY JUDGMENTS AND MACHINE LEARNING 2

algorithms best predict similarity judgments. In addition to accuracy (number of correct
predictions / total number of predictions), machine learning uses other performance metrics
of classification (Ting, 2010). Precision (or positive predictive value) is the proportion
of cases predicted to be positive that are actually positive (number of correct positive
predictions / number of positive predictions). Recall (or sensitivity, hit rate, true positive
rate) is the proportion of actual positives that are correctly classified (number of correct
positive predictions / number of positive cases). For our purposes, we can think of “similar”
judgments as positive. So precision is the proportion of similar predictions that the algorithms
correctly classify as similar, and recall is the proportion of actual similar judgments that the
algorithms correctly classify as similar (Table 1).

Table 1
Confusion matrix for true vs. predicted judgments with precision and recall

True judgment

Predicted judgment Judged similar Judged dissimilar

Predicted similar True Similar (TS) False Similar (FS) Precision = T S
T S+F S

Predicted dissimilar False Dissimilar (FD) True Dissimilar (TD)

Recall = T S
T S+F D Accuracy = T S+T D

T S+F S+F D+T D

Note: Table used with permission under a CC-BY4.0 license: Stevens et al., 2020; available at
https://doi.org/10.17605/OSF.IO/WYTD9.

To calculate these performance metrics, we must have predictors. Stevens and Soh
(2018) mathematically arranged the small and large values to generate 11 predictors that
may predict similarity judgments (Table S1). A second aim of the current study is to
reassess which predictors are most useful in predicting similarity judgments using the wider
range of algorithms. Further, the previous analysis only found the single best predictor for
each person by extracting the predictor used as the first node in the decision tree. Here,
we assess predictor importance (“relative contribution of each input variable in predicting
the response”; Hastie, Tibshirani, & Friedman, 2009) for each algorithm that allows this
calculation. Therefore, we compute importance measures across a range of algorithms and
for each predictor.

Finally, assessing similarity judgments requires asking for pairwise binary judgments of
similar or dissimilar from participants. It would be useful to be able to predict an individual’s
similarity judgments with as few questions as possible. Therefore, our final aim is to evaluate
prediction accuracy at different sample sizes to determine the minimum number of questions
required to accurately predict similarity judgments using a learning-curve analysis (Perlich,
Provost, & Simonoff, 2003). Further, we assess whether the ordering of the questions
influences prediction accuracy. Typically, when assessing the effects of sample size on
accuracy, machine-learning analyses randomly select the cases within the training sets.
Though this is fine for overall analyses of sample size, our aim requires a different approach.
Because we are interested in minimizing the number of questions asked, we must consider
the questions in the order in which they were asked in case judgments change over time.
Therefore, we compare the effect of sample size on accuracy for questions that are randomly
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selected to those that are selected in the order experienced by the participants.

To address the aims of the study, we reanalyzed the two similarity judgment data sets
used in Stevens and Soh (2018). We repeatedly split the data from each individual into a
training set and testing set. We fit each algorithm to the training set and then used the
fitted model to predict the testing set (Yarkoni & Westfall, 2017). We calculated accuracy,
precision, and recall on this out-of-sample testing set. With this method, we investigated (1)
which algorithms performed best, (2) which predictors best predicted judgments, and (3)
how sample size and question order influenced predictive accuracy for similarity judgments.

Methods

Data sets

We tested the different machine-learning algorithms on two data sets used in Stevens
and Soh (2018). In both data sets, Stevens and Soh removed participants with inattentive
choice (e.g., judged 10 vs. 10 to be dissimilar or 1 vs. 90 to be similar), inconsistent choice
(in a step-wise increase of large values, switching judgments more than three times), or
near uniform choice (≥ 95% choice for similar or dissimilar). This eliminated 32 of the 155
participants from Stevens and Soh, leaving 123 for our current analysis.

The first data set was collected from 50 participants (25 males and 25 females) with
a mean±SD age of 28.6±3.8 (range 24-42) years recruited from the Adaptive Behavior
and Cognition Web Panel at the Max Planck Institute for Human Development in Berlin,
Germany in August 2011. Participants received a flat fee of €3 for completing the survey.
Web panel participants made similarity judgments between 50 pairs of amount values (e.g.,
€6 vs. €8) and 49 pairs of delay values (e.g., 6 days vs. 8 days): “Please decide whether the
numbers are similar”. This research was approved by the Max Planck Institute for Human
Development’s Ethics Committee.

The second data set was collected from 73 participants (25 males and 48 females)
with a mean±SD age of 19.9±1.6 (range 18-26) years recruited from the University of
Nebraska-Lincoln Department of Psychology undergraduate participant pool in December
2014. Participants received course credit for their participation. Participants started by
making 20 intertemporal choices before rating the similarity of 41 reward amount values
and 42 time delay values: “Do you consider receiving [small amount] and [large amount]
to be similar or dissimilar?” and “Do you consider waiting [short delay] and [long delay]
to be similar or dissimilar?”. The intertemporal choices used the same value pairs as the
similarity judgments and were included first to expose participants to the range of amount
and delay magnitudes and to provide the overall decision context before they made similarity
judgments. This research was approved by the University of Nebraska-Lincoln Internal
Review Board (IRB Approval # 20130313118EP).
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Data analysis

We used R (Version 4.0.0; R Core Team, 2018) and the R-packages C50 (Version
0.1.3.1; Kuhn & Quinlan, 2020), caret (Version 6.0.86; Kuhn, 2020), e1071 (Version 1.7.3;
Meyer, Dimitriadou, Hornik, Weingessel, & Leisch, 2019), foreach (Version 1.5.0; Microsoft &
Weston, 2020), GGally (Version 1.5.0; Schloerke, Crowley, Cook, Briatte, Marbach, Thoen,
Elberg, & Larmarange, 2020), here (Version 0.1; Müller, 2017), naivebayes (Version 0.9.7;
Majka, 2019), nnet (Version 7.3.14; Venables & Ripley, 2002), papaja (Version 0.1.0.9942;
Aust & Barth, 2018), patchwork (Version 1.0.0; Pedersen, 2019), randomForest (Version
4.6.14; Liaw & Wiener, 2002), rpart (Version 4.1.15; Therneau & Atkinson, 2019), tidytext
(Version 0.2.4; Silge & Robinson, 2016), and tidyverse (Version 1.3.0; Wickham, 2017) for all
our analyses (package usage described in the R script found in Supplementary Materials).
The manuscript was created using rmarkdown (Version 2.1; Xie, Allaire, & Grolemund,
2018). Data, analysis scripts, supplementary tables and figures, and the reproducible research
materials are available in Supplementary Materials and at the Open Science Framework
(https://osf.io/edq39/).

Predictors. We adapted predictors used in Stevens and Soh (2018) for our inves-
tigation in this paper. In the original study reported in Stevens and Soh, there were 11
predictors: small value, large value, difference, ratio, mean ratio, log ratio, relative difference,
disparity ratio, salience, discriminability, and logistic (Table S1). However, we observed
that a number of these predictors are very similar functions and thus may suffer from
multicollinearity, which can be a problem for some machine-learning algorithms (Kuhn &
Johnson, 2013). Therefore, we computed pairwise correlations for all predictors (Figures S1
& S2). Correlation coefficients for ratio, mean ratio, log ratio, relative difference, disparity
ratio, salience, and discriminability all exceeded 0.81. Therefore, we removed mean ratio,
relative difference, disparity ratio, and salience from the analyses. We kept ratio, log ratio,
and discriminability as predictors because ratio was a key predictor in Stevens and Soh
(2018) and log ratio and discriminability both have curvilinear relationships with ratio and
therefore may provide additional information for classification. Thus, the following analyses
include small value, large value, difference, ratio, log ratio, discriminability, and logistic.

Algorithms. We used a set of commonly used algorithms, including tree-based
models C5.0 (Quinlan, 1993; Kuhn & Johnson, 2013) and random forest (Breiman, 2001),
k-nearest neighbor (kNN; Cover & Hart, 1967), naive Bayes (Maron, 1961), neural networks
(McCulloch & Pitts, 1943), and support vector machines (SVM; Boser, Guyon, & Vapnik,
1992). We combined these with those used in Stevens and Soh (2018): CART (Breiman,
Friedman, Olshen, & Stone, 1984) and logistic regression.

Accuracy, precision, and recall. All analyses were conducted at the level of the
individual participant for each judgment type (amount and delay). We conducted analyses
for two different orderings: random and sequential. For random ordering, we first partitioned
the data using a stratified random sample based on similarity judgments, so the training
and testing sets had comparable distributions of similarity judgments (i.e., approximately
the same proportion of “similar” vs. “dissimilar” judgments in both sets). For sequential
ordering, we created the training set by drawing the judgments in the order in which each
participant made their similarity judgments. Once the training sets were drawn, for both

https://osf.io/edq39/
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orderings, we generated testing sets by randomly drawing 10 samples from the non-training
judgments. This ensured that all testing sets included the same number of judgments,
regardless of training set size.

Because one of our research aims involved exploring how sample size influenced
algorithm predictive accuracy, we analyzed accuracy over a range of training set sizes. The
two data sets included 50 and 43 judgments of each type, and we analyzed training set sizes
of 15, 20, 25, and 30 samples for both data sets. For data set 1, this is equivalent to 30%,
40%, 50%, and 60% of the total data, and, for data set 2, this maps to 36%, 48%, 59%, and
71% of the total data.

We fit models on each training set for each algorithm using the train function in
the caret package (Kuhn, 2020), which uses bootstrapping to resample the data and fit the
model repeatedly (Kuhn & Johnson, 2013). We applied each model to the training set and
calculated accuracy, precision and recall for the training data (not presented here). We then
used the models to predict the testing data to calculate out-of-sample accuracy, precision,
and recall. This process was repeated 100 times for each data set, judgment type, subject,
algorithm, and training set size. We then calculated the mean accuracy, precision, and recall
over the 100 repetitions.

Predictor importance. All algorithms except support vector machines provide a
measure of predictor importance. We calculated predictor importance on the full data set
(no training and testing sets) for each participant, data set, judgment type, algorithm (except
support vector machine), and predictor using the varImp function in the caret package
(Kuhn, 2020). While each model type has a different metric of importance (Table S2), we
scaled importance values, with the most important variable importance set to 100.

Results

Algorithm performance

To determine which algorithms best predict similarity judgments, we measured ac-
curacy, precision, and recall on out-of-sample predictions from the aforementioned eight
algorithms. We calculated these measures on the largest sample size (30 samples) and with
random ordering for each participant. Figure 1 presents accuracy, precision, and recall rates
for each algorithm summarized over data set and judgment type. For accuracy (number of
correct predictions / all predictions), neural network, random forest, and support vector
machine algorithms yielded the highest accuracy rates at 90%, with naive Bayes and C5.0
performing slightly worse, followed by CART, logistic regression, and kNN. Precision (correct
similar predictions / all similar predictions) shows a similar ordering, but with equivalently
high precision rates for naive Bayes, C5.0, neural networks, random forest, and support
vector machines. CART and logistic regression show slightly lower precision, with kNN
showing substantially lower rates. For recall (correct similar predictions / actual similar
judgments), CART, naive Bayes, C5.0, neural networks, random forest, and support vector
machines have similarly high rates, with logistic regression and kNN having lower rates.
Similar rankings of the algorithms’ performance were observed across both data sets and
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between amount and delay similarity judgments, with the exception of elevated recall rates
for kNN in data set 1 (Figure S3).

Figure 1 . Out-of-sample accuracy, precision, and recall for each algorithm based on random
ordering of a sample size of 30 instances and a testing set size of 10 instances. For each
performance measure, algorithms are ordered by mean score. Dots represent means, error
bars represent within-subjects 95% confidence intervals, boxplot horizontal lines represent
medians, boxes represent interquartile range (25-75th percentile), whiskers represent 1.5 ×
interquartile range. Outliers are not shown. Note the y-axis is truncated at 0.65 to enlarge the
presentation of the means and confidence intervals. Figure used with permission under a CC-
BY4.0 license: Stevens et al., 2020; available at https://doi.org/10.17605/OSF.IO/WYTD9.

Predictor importance

Different algorithms use predictors differently, so the predictors can vary in their
contribution to the model performance. To assess which predictors were most useful in
predicting similarity judgments, we calculated predictor importance for each participant,
data set, judgment type, algorithm, and predictor using the full data set. Figure 2 illustrates
the importance of each predictor summarized over data set, judgment type, and algorithm.
The numerical difference between large and small values was the most important predictor,
followed by logistic, ratio and discriminability, log ratio, large value, and small value. Similar
rankings of the predictors’ performance were observed across both data sets and between
amount and delay similarity judgments (Figure S4). While CART, kNN, naive Bayes, and

https://doi.org/10.17605/OSF.IO/WYTD9
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random forest algorithms generate these rankings of predictor importance, C5.0, neural
networks, and logistic regression generated different rankings (Figure S5). C5.0 was somewhat
similar to the others, logistic regression showed little differentiation between predictors, and
neural networks generated completely different rankings than the other algorithms.

Figure 2 . Importance of each predictor for each algorithm. Predictor importance refers
to the relative contribution of each predictor to predicting the response. Predictors are
ordered by mean importance. Dots represent means, error bars represent within-subjects 95%
confidence intervals, boxplot horizontal lines represent medians, boxes represent interquartile
range, whiskers represent 1.5 × interquartile range. Outliers are not shown. Figure
used with permission under a CC-BY4.0 license: Stevens et al., 2020; available at https:
//doi.org/10.17605/OSF.IO/WYTD9.

Sample size and order

Developing small but predictive sets of judgment questions can allow us to predict
judgments of value pairs that participants have not made. To investigate the effect of
sample size on algorithm performance, we randomly sampled different training set sizes and
repeatedly assessed each algorithm’s accuracy in predicting a fixed, out-of-sample testing
set. Figure 3 (left panel) shows predictive accuracy for each algorithm at each sample
size. Accuracy clearly increases with larger samples, but the rate of increase differs across
algorithms. Remarkably, random forest and support vector machines have about 87-88%
accuracy at the smallest sample size of 15 (out of 43-50 judgments). Naive Bayes, C5.0, and
neural networks yield only slightly lower accuracy rates of 86%. The remaining algorithms
perform substantially worse at the lowest sample size but increase their performances

https://doi.org/10.17605/OSF.IO/WYTD9
https://doi.org/10.17605/OSF.IO/WYTD9
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with larger sizes. CART, in particular, performs very poorly at the lowest sample size
but dramatically improves its performance at the next size, where it surpasses kNN and
logistic regression. These rank orderings of algorithm performance hold across data sets and
judgments types, with slightly lower accuracy rates in data set 2 (Figure S6A).

Figure 3 . Testing accuracy for each sample size for each algorithm. Sample size refers
to number of questions per participant used to train the algorithms. Random refers to
a random sample of training questions used to predict a random sample of 10 testing
questions. Sequential refers to a sample of training questions drawn in order of presentation
to each participant that was used to predict a random sample of 10 testing questions.
Dots represent means, and error bars represent between-subjects 95% confidence intervals
(within-subject confidence intervals were not used because excessive missing data for small
sample sizes caused too many participants to be removed from the calculations). Figure
used with permission under a CC-BY4.0 license: Stevens et al., 2020; available at https:
//doi.org/10.17605/OSF.IO/WYTD9.

Though most assessments of sample size effects on algorithm performance randomly
draw cases from data sets, the order in which participants experience questions can influence
their responses. Given that the aim of this analysis is to determine how well small samples
can predict judgments more generally, we must account for the sequential order in which
participants make judgments. To investigate how well early questions can predict later ones,
we fit the algorithms on training sets of various sizes, but, rather than randomly drawing
the cases, we selected cases in the order in which participants experienced the questions.
Figure 3 (right panel) shows predictive accuracy for each algorithm at each sample size

https://doi.org/10.17605/OSF.IO/WYTD9
https://doi.org/10.17605/OSF.IO/WYTD9
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for the sequentially ordered data. The pattern of results is qualitatively similar to those
from the randomly selected data but with lower accuracy rates. Again, random forest and
support vector machines top the algorithm rankings with only slightly lower accuracy than
the random order (85-86%). And the algorithm rankings hold across data sets and judgment
types (Figure S6B).

Discussion

Our analysis of algorithm performance found comparable levels of performance in
accuracy, precision, and recall, but the algorithms differed in their performance across
these three measures. Similarly, the different predictors varied in their contributions to
algorithm performance, some of which matched previous findings, but others differed. Finally,
as is typically the case in machine learning, algorithm performance improved with larger
sample sizes, and the algorithms performed better predicting randomly selected samples
than samples entered in the order experience by participants.

Algorithm performance

Neural network, random forest, and support vector machine algorithms generated the
highest predictive accuracy for both data sets and judgment types. In addition to these,
naive Bayes and C5.0 showed the highest precision, and CART joined all of these algorithms
in showing the highest levels of recall. These analyses illustrate interesting differences across
algorithms. First, this analysis replicates work by Stevens and Soh (2018) showing better
accuracy rates in CART than logistic regression, supporting the notion that machine-learning
algorithms can outperform standard statistical models in predicting decision making. While
the relative ranking of these two algorithms was the same, the absolute levels of accuracy
and the difference in accuracy between CART and logistic regression differed slightly from
Stevens and Soh (2018). In the current analysis, the accuracy rates were higher and the
difference between CART and logistic regression were smaller than in Stevens and Soh
(2018). The current analysis differed from Stevens and Soh in several ways. For instance,
Stevens and Soh used 50% of the data for the training set, whereas the current analysis used
60-70%. Also, Stevens and Soh used 50% of the data for the testing set, whereas the current
analysis used 10 instances. When using 50% of the training set in the current analysis, we
see similar accuracy as Stevens and Soh for CART but higher levels in logistic regression
(Figure 3). This improvement in performance for logistic regression is likely due to removal
of collinear predictors in the current analysis. Regression models are particularly susceptible
to problems associated with multicollinearity (Kuhn & Johnson, 2013).

The current analysis suggests that both CART and logistic regression are outperformed
by a number of other machine-learning models, including C5.0, naive Bayes, neural networks,
random forest, and support vector machines. Therefore, even higher levels of predictive
accuracy can be achieved by testing a wider range of models. A key reason that Stevens
and Soh (2018) used CART was to test the possibility that decision trees capture the actual
cognitive computations of decision making. That is, similarity judgments may actually be
made in decision-tree-like ways. Thus, it is important to see that two other tree-based
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algorithms (C5.0 and random forest) outperform CART. While we do not directly test
predictions about the computational process on C5.0 and random forest here, this provides
a fruitful area of future research.

Decision trees are not the only class of algorithms that perform well. Neural networks
and support vector machines perform as well as random forest. These algorithms, however,
are “black box” algorithms in the sense that their process of converting predictors into
predictions for the outcomes is not straightforward. Whereas random forest produces decision
trees which can, in principle, mimic the cognitive computations of how judgments are made,
neural networks produce a series of layers of nodes with weights connecting them (Laine,
2003), and support vector machines calculate multidimensional hyperplanes (Zhang, 2010).
Therefore, though neural networks mimic neural computations, these algorithms do not
resemble a cognitive process, so we favor the process-based decision tree algorithms.

With the exception of kNN’s recall rate in data set 1, the three performance measures
were consistent across data sets and judgment types. Consistency across data sets indicates
robustness of these analyses within the area of similarity judgments. Although there were
only two data sets analyzed, the actual similarity value pairs differed between the data sets,
and, perhaps more importantly, the study sample population differed with Germans being
sampled in data set 1 and Americans in data set 2. Nevertheless, both populations were
relatively similar in age and educational level, with the Germans being slightly older. Both
participant groups were drawn from predominantly white, educated, industrialized, rich, and
democratic (WEIRD) populations (Henrich, Heine, & Norenzayan, 2010). The narrow scope
of the questions and the similarity of the study populations make it difficult to generalize
our findings beyond similarity judgments in WEIRD populations.

Predictor importance

A key feature of many algorithms is that they can offer a metric of how much each
predictor contributed to the predictions. This predictor importance offers insight into which
predictors are most useful. Across all algorithms, our analysis showed that the numerical
difference predictor contributed the most to predictive performance, followed by logistic,
discriminability, and ratio. Stevens and Soh (2018) also found difference to be the primary
predictor used as the first node in 62-71% of participants’ decision trees. In fact, difference
was the most important predictor in the current analysis for all algorithms except logistic
regression and neural networks. This provides robust evidence that one of the simplest
predictors (large value − small value) is also the most important in making similarity
judgments.

One key difference between the current analysis and Stevens and Soh (2018) is the
next most important predictors. Stevens and Soh found that ratio was the second most
used primary node predictor for CART (27-33% of participants), with relative difference and
logistic following (1-2%). The current analysis showed logistic followed by discriminability
and ratio. This is a surprising contradiction of Stevens and Soh’s findings because logistic
and discriminability are more mathematically complicated combinations of small value and
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large value compared to ratio (Table S1). Though a simple predictor is the most important
predictor, the next most important predictor could be a more complex variable.

The discrepancy with Stevens and Soh (2018) could arise because of two reasons.
First, the measure of predictor importance in the current analysis is based on different
types of metrics across algorithms (Table S2) that are scaled similarly for comparison.
Because different algorithms use different metrics, the scaling (apart from the most and least
important predictor) may not be comparable across algorithms. Therefore, the predictors
of intermediate importance may be compressed or expanded differently across algorithms.
Nevertheless, logistic was the second most important predictor across all but two of the
algorithms. Second, the set of predictors in the two analyses differed. Stevens and Soh
included all eleven predictors, and the current analysis used a limited set of predictors to
reduce multicollinearity. The multicollinearity of many of the predictors with ratio could have
somehow boosted its performance, whereas without multicollinearity, ratio’s contribution
could have been reduced. This finding speaks to the importance of feature selection in
investigating predictor importance (Kuhn & Johnson, 2019).

Sample size and order

Sample size is a key aspect of algorithm performance (Perlich, Provost, & Simonoff,
2003). As expected, we found that accuracy increased with sample size of randomly selected
data. Some algorithms (notably random forest and support vector machines) showed high
predictive accuracy even at the smallest size (15 instances or 30-36% of the total number
of instances). Therefore, choosing the appropriate algorithm can result in high predictive
accuracy even with small samples.

Analyses of randomly selected data, however, do not capture the potential effects of
the order of experiencing questions on participants’ judgments. That is, participants may get
tired or change their judgment criteria over time. So judgments made early during testing
may not match those made later in testing. To explore this, we analyzed the data by entering
the instances in the order experienced by participants and examining accuracy across a
range of sample sizes. Including the sequentially ordered instances reduced accuracy. But
random forest and support vector machines still outperformed other algorithms, especially
at small sample sizes.

While other algorithms dropped in accuracy substantially, random forest and support
vector machines maintained very high accuracy for the sequentially ordered data. At the
smallest sample size, these two algorithms correctly predicted 85-86% of the judgments.
This level of accuracy with such small samples sizes is remarkable and bodes well for being
able to collect rather small samples and extrapolate more generally.

In summary, we have evidence that machine-learning algorithms can take as input small
amounts of data and make robust out-of-sample predictions. Leveraging these algorithms
can influence experimental designs by requiring fewer questions. By reducing numbers of
questions, we can minimize the burden on participants, which can either improve data quality
by not tiring participants or allow the opportunity to add other experimental procedures
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when participant time is limited. Either way, employing machine-learning algorithms can
enhance experimental design.

Limitations and future directions

This article expands the application of machine learning to similarity judgments
compared to Stevens and Soh (2018) by investigating more algorithms, more measures of
performance, more sophisticated measures of predictor importance, and a more nuanced
approach to sample size. However, the tools available in machine learning are many, and they
are increasing in number and sophistication. We limited our analysis to eight algorithms,
chosen based on suitability for our data and previous frequency of use in the machine-learning
literature. Of course, there are other algorithms that we could have tested, some of which
might have outperformed our top models. Nevertheless, we used a standard set of models,
many of which had equally high performance. It seems unlikely additional models would
provide substantial new insights or contradictory information.

A great deal of effort has focused on developing methods to optimize model parameters
to improve fit (Kuhn & Johnson, 2013). We took a relatively basic approach to tuning model
parameters, primarily using default options in our analysis software. It is possible that more
sophisticated parameter tuning could yield different results. But, again, given the consistency
and high performance across models, this seems unlikely. Moreover, more sophisticated
tuning often comes at the price of longer computation times. We have opted to minimize
computation time by using the default tuning methods. Finally, optimizing parameters can
result in models overfitting data. We used standard cross-validation techniques to reduce
overfitting by both calculating predictive performance measures on out-of-sample data fitted
on training data and fitting models to the training data using resampling techniques (Kuhn
& Johnson, 2013).

In general, machine-learning models perform best with many instances to work
with. This allows for large training sets that include representative instances from the
population of possible instances. Though we have a large number of total instances (over
11,000), we conducted the analysis at the level of the participant and judgment type
(amount or delay judgment) because we were interested in being able to predict individual
participant judgments. This resulted in only 40-50 instances per analysis, which is rather
small for machine-learning analyses that use cross-validation. This is apparent with the
poor performance of CART at sample sizes of 15 samples but rapid improvement at 20
samples (Figure 3). The other algorithms, however, show a more gradual increase in
performance with sample size, suggesting that sample sizes used here are not too small to
allow reasonable performance. From a logistical perspective, having participants answer
more than 50 questions for each judgment is already rather tiring, and increasing the number
of questions could result in poor data quality. So, though more instances could be better for
the model performance, the models perform well with these sample sizes, and increasing
them could produce more problematic data.

This article has focused on similarity judgments of monetary amounts and time delays
because they are the attributes that are relevant to intertemporal choice. But the similarity
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approach also applies to risky and strategic choice (Rubinstein, 1988; Leland, 1994; Leland,
2013). Thus, this approach can be expanded beyond amounts and delays to probabilities of
receiving rewards, an attribute of risky choice. Probabilities, however, are bounded, which
could result in different algorithms and predictor importance compared to amounts and
delays. Though the similarity approach has not been formally applied to multiattribute
choice (e.g., choosing an apartment based on rent, size, distance from work, etc.), this is
another area to which it could be applied. The scale and boundedness of the attribute
values could influence how similarity is assessed, but these methods should be able to apply
to most quantitative attributes. Yet research on similarity is not limited to quantitative
attributes (Tversky, 1977; Shepard, 1987; Goldstone & Son, 2005), and machine learning
has broad application to understanding both quantitative and non-quantitative components
of similarity (Aha, Kibler, & Albert, 1991; Hahn & Chater, 1998).

Conclusion

Machine learning comprises a powerful set of tools to classify outcomes. While some
areas of psychology have been fruitfully using machine learning for a while (Mooney, 1993;
Sutton & Barto, 2018), the field has not leveraged these tools fully (Yarkoni & Westfall, 2017).
Judgment and decision making, in particular, is an area ripe for applying machine learning,
and some have taken advantage of these tools (Kattan, Adams, & Parks, 1993; Rosenfeld,
Zuckerman, Azaria, & Kraus, 2012; Brighton & Gigerenzer, 2015). Here, we used machine
learning to achieve multiple goals. First, we assessed the performance of several algorithms
in predicting similarity judgments from participant data. Though evaluating algorithm
performance is not typically a psychological question, in our case, we investigated whether
decision tree algorithms performed well, since they could offer cognitive process-based models
of actual decision making. Indeed, we found that the random forest algorithm—one that
is based on decision trees—topped the list of best-performing algorithms. We can further
probe this algorithm because, not only does it accurately predict similarity judgments, it
also gives a window into the process of classification by generating measures of predictor
importance and allowing the extraction of a step-by-step set of rules used to generate the
predictions. Testing a broad range of machine-learning algorithms allowed us to pinpoint a
highly accurate model that may also approximate the actual judgment process.

Second, our analysis provided the opportunity to examine which predictors were
most important in making the judgment classifications. While regression alone can provide
information about predictor performance, it is only a single model, and its predictions
depend on its assumptions and methods. Our analysis produced predictor importance
measures across a range of algorithms, which can provide information about the robustness
of importance across models. For instance, we found rather consistent rankings of predictor
importance across four very different types of algorithms (Figure 2). But differences across
algorithms are interesting as well. For instance, while it has above average importance in
most algorithms, the predictor discriminability is ranked most important by neural networks.
This could inspire further investigations, as assessing predictor importance across a range of
algorithms can be useful in drawing inferences about those predictors.

Finally, in addition to answering theoretical questions about models and predictors,
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machine learning can inform the logistics of data collection. We evaluated algorithm accuracy
across a range of training set sizes to see how robust they are to sample size. Moreover, we
used samples ordered by how they were experienced by participants to see how predictive
different numbers of questions were to judgments more generally. Our analysis showed that
some algorithms could predict judgments with quite high accuracy at rather small sample
sizes. This finding is useful for designing future studies, where we can trim the number of
questions that we ask participants, which can reduce participant fatigue or allow time to
ask other questions. Thus, using machine-learning algorithms can help us both understand
our data in more depth and design better ways of collecting those data.
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